Loading...
Search for: model-validation
0.006 seconds
Total 53 records

    Test based Software Repair Recommendation

    , M.Sc. Thesis Sharif University of Technology Rasekhi, Mahnaz (Author) ; Mirian Hosseinabadi, Hassan (Supervisor)
    Abstract
    Debugging programs is a time-consuming and error-prone activity. So far, much research has tried to repair the programs automatically. Many of them try to change the location of the fault for a faulty program that fails at least one of its test cases so that all cases in the test suite pass. However, in real projects, the test suite is usually not enough, and the methods that aim to pass the test suite, often lead to the production of incorrect repairs, which is known as overfitting or weak test suite. In this regard, attention to methods based on program specification and the use of static code analysis have shown promising results. In this thesis, a method is presented that recommends... 

    Evaluation of variable permeability model in simulation of seismic behavior of uniform level and gently sloping sand layers

    , Article Earth Sciences Research Journal ; Volume 24, Issue 3 , 2020 , Pages 328-336 Ghassemi, A ; Seyfi, S ; Shahir, H ; Sharif University of Technology
    Universidad Nacional de Colombia  2020
    Abstract
    In this study, a fully coupled dynamic finite element model was employed for numerical simulation of the response of level to gently sloping saturated sand layers subjected to cyclic loading. This model utilized a critical state two-surface-plasticity constitutive model to simulate the cyclic behavior of sandy soil. Moreover, a recently proposed variable permeability function was implemented in the numerical model to reflect the effects of soil permeability variations during the liquefaction phenomenon. The numerical model was validated by simulating a number of well-documented geotechnical centrifuge tests with different relative density of sand, base acceleration time history, and surface... 

    Reliability-based network flow estimation with day-to-day variation: a model validation on real large-scale urban networks

    , Article Journal of Intelligent Transportation Systems: Technology, Planning, and Operations ; Volume 22, Issue 2 , 2018 , Pages 121-143 ; 15472450 (ISSN) Torkjazi, M ; Mirjafari, P. S ; Poorzahedy, H ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Day-to-day variation in the travel times of congested urban transportation networks is a frustrating phenomenon to the users of these networks. These users look pessimistically at the path travel times, and learn to spend additional time to safeguard against serious penalties that await late arrivals at the destinations. These additional expenses are charges similar to the tolls in system equilibrium flow problem, but may not be collected. With this conjecture, the user equilibrium (UE) formulation of congested network flow problem would lack some necessary factors in addressing appropriate path choices. This study, following a previous work proposing pessimistic UE (PUE) flow, aims to show... 

    A rigorous finite volume model to simulate subaerial and submarine landslide-generated waves

    , Article Landslides ; Volume 14, Issue 1 , 2017 , Pages 203-221 ; 1612510X (ISSN) Yavari Ramshe, S ; Ataie Ashtiani, B ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    This paper presents a new landslide-generated wave (LGW) model based on incompressible Euler equations with Savage-Hutter assumptions. A two-layer model is developed including a layer of granular-type flow beneath a layer of an inviscid fluid. Landslide is modeled as a two-phase Coulomb mixture. A well-balanced second-order finite volume formulation is applied to solve the model equations. Wet/dry transitions are treated properly using a modified non-linear method. The numerical model is validated using two sets of experimental data on subaerial and submarine LGWs. Impulsive wave characteristics and landslide deformations are estimated with a computational error less than 5 %. Then, the... 

    Displacement ratios for structures with material degradation and foundation uplift

    , Article Bulletin of Earthquake Engineering ; Volume 17, Issue 9 , 2019 , Pages 5133-5157 ; 1570761X (ISSN) Dolatshahi, K. M ; Vafaei, A ; Kildashti, K ; Hamidia, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this paper, combined effects of material degradation, p-delta, and foundation uplift are incorporated in a soil-structure-interaction (SSI) framework to assess seismic response of a single-degree-of-freedom system. The considered phenomenological systems represent a column with a lumped mass on top is placed on a rigid foundation. The foundation is mounted on Winkler springs and dashpots to take account of soil-foundation compliance and material/radiation damping. The springs are tensionless to guarantee that uplift is properly modelled. The model is verified for two specific limit cases with the code and literature to make sure that the model is capable of capturing SSI and foundation... 

    Dynamic modeling and optimization of asphaltene deposition in reservoir rocks using genetic algorithm

    , Article 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010: A New Spring for Geoscience. Incorporating SPE EUROPEC 2010 ; Volume 6 , 2010 , Pages 4291-4295 ; 9781617386671 (ISBN) Bagheri, M. B ; Kharrat, R ; Hemmatfar, V ; Ghotbi, C ; Sharif University of Technology
    Society of Petroleum Engineers  2010
    Abstract
    Asphaltene deposition is a problematic challenge for oil production. Changes in key parameters like pressure and fluid composition during natural depletion and different gas injection scenarios may result in asphaltene precipitation and deposition. In this work, a model is developed by application of mass balance equations, momentum equation, asphaltene deposition and permeability reduction models. An algorithm is developed to perform iterative procedure to solve the numerical equations that contains highly coupled variables. Indeed, an equation is introduced to calculate the saturation of the precipitated asphaltene phase. Model parameters were determined by genetic algorithm which is a... 

    An investigation into the effect of pressure source parameters and water depth on the wake wash wave generated by moving pressure source

    , Article Scientia Iranica ; Volume 25, Issue 4 , 2018 , Pages 2162-2174 ; 10263098 (ISSN) Javanmardi, M ; Binns, J ; Thomas, G ; Renilson, M ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    In this study, the effect of moving pressure source and channel parameters on the generated waves in a channel was numerically investigated; draught, angle of attack, and profile shape as parameters of pressure source, and water depth and blockage factor as channel parameters for wave height. Firstly, the chosen Computational Fluid Dynamics (CFD) approach was validated with the experimental data over a range of speeds. Then, the CFD study was conducted for further investigations. It was shown that that by enlarging draught, angle of attack, and beam of the pressure source, the wave height generated would be increased. Channel study showed that it was possible to increase the wave height... 

    A computational plastic-damage method for modeling the FRP strengthening of concrete arches

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2123-2132 ; 10263098 (ISSN) Ahmadpour, T ; Ttehrani, Y. N ; Klioei, A. R ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this paper, a computational technique is presented based on a concrete plastic-damage model to investigate the effect of FRP strengthening of reinforced concrete arches. A plastic-damage model was utilized to capture the behavior of concrete. The interface between the FRP and concrete was modeled using a cohesive fracture model. In order to validate the accuracy of the damage-plastic model, a single element was employed under monotonic tension, monotonic compression, and cyclic tension loads. An excellent agreement was observed between the predefined strain-stress curve and that obtained by the numerical model. Furthermore, the accuracy of the cohesive fracture model was investigated by... 

    A computational plastic-damage method for modeling the FRP strengthening of concrete arches

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2123-2132 ; 10263098 (ISSN) Ahmadpour, T ; Tehrani, Y. N ; Klioei, A. R ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this paper, a computational technique is presented based on a concrete plastic-damage model to investigate the effect of FRP strengthening of reinforced concrete arches. A plastic-damage model was utilized to capture the behavior of concrete. The interface between the FRP and concrete was modeled using a cohesive fracture model. In order to validate the accuracy of the damage-plastic model, a single element was employed under monotonic tension, monotonic compression, and cyclic tension loads. An excellent agreement was observed between the predefined strain-stress curve and that obtained by the numerical model. Furthermore, the accuracy of the cohesive fracture model was investigated by... 

    Cultural identity among Iranian English language teachers

    , Article International Journal of Society, Culture and Language ; Volume 7, Issue 1 , 2019 , Pages 67-82 ; 23292210 (ISSN) Rezaei, S ; Bahrami, A ; Sharif University of Technology
    Lulu Press Inc  2019
    Abstract
    This survey investigated the cultural identity of Iranian English language teachers. Accordingly, a cultural identity model was proposed a priori, based on which a questionnaire was developed and piloted on 50 Iranian English language teachers (α = 0.87). The developed questionnaire was then administered to 636 male and female Iranian English language teachers. The results of confirmatory factor analysis showed that the model was fit and eight components namely 1) religious beliefs, 2) history, 3) customs, 4) manners and behaviors, 5) Persian language, 6) literature and art, 7) parents’ influence and 8) family relations were confirmed to form the core of Iranian cultural identity. The... 

    Development of a reduced order model for nonlinear analysis of the wind turbine blade dynamics

    , Article Renewable Energy ; Volume 76 , February , 2015 , Pages 264-282 ; 09601481 (ISSN) Rezaei, M. M ; Behzad, M ; Haddadpour, H ; Moradi, H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this paper, a reduced order model for the nonlinear dynamic analysis of the wind turbine blade under operational loading is presented. The accuracy and efficiency of the proposed model are investigated through various static and dynamic analyses. A comprehensive straightforward formulation for the nonlinear beam model is developed based on different large deformation strain theories. Also, the fluid-structure coupling effects due to quasi-steady aerodynamics and gravitational forces are included. The new matrix expressions are introduced for direct conversion of the developed formulation into the reduced order model (ROM). Thereafter, the ROM based on the Galerkin method is developed... 

    Aging based optimal scheduling framework for power plants using equivalent operating hour approach

    , Article Applied Energy ; Volume 205 , 2017 , Pages 1345-1363 ; 03062619 (ISSN) Parhizkar, T ; Mosleh, A ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this paper a scheduling optimization framework is developed to enhance power plants operational decision making process. The proposed framework optimizes plant schedule including operating conditions and maintenance intervals simultaneously and on an hourly basis. In a long term operation plant performance deteriorates due to components aging. This study employs equivalent operating hour (EOH) approach to describe components aging impact on the plant performance deterioration and consequently plant long term profit. Modeling of components aging increases system simulation accuracy in long term operation and the optimum decision variables would be more reliable and realistic. Validity and... 

    Annual comparative performance and cost analysis of high temperature, sensible thermal energy storage systems integrated with a concentrated solar power plant

    , Article Solar Energy ; Volume 153 , 2017 , Pages 153-172 ; 0038092X (ISSN) Mostafavi Tehrani, S. S ; Taylor, R. A ; Nithyanandam, K ; Shafiei Ghazani, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The present study conducts a comprehensive comparative techno-economic analysis of some near-term sensible thermal energy storage (TES) alternatives to the ‘standard’ two-tank molten salt system for concentrated solar power (CSP) plants. As such, we conducted detailed, relative annual transient simulations for single-medium thermocline (SMT), dual-media thermocline (DMT), and shell-and-tube (ST) systems. To be consistent with recent literature, the DMT and ST systems use concrete with a porosity of 0.2 (e.g. where concrete occupies 80% of the system) as their low cost filler material. The systems were integrated into a validated 19.9 MWe Gemasolar CSP model, which has a solar multiple of... 

    Modeling and validation of a detailed FE viscoelastic lumbar spine model for vehicle occupant dummies

    , Article Computers in Biology and Medicine ; Volume 99 , 2018 , Pages 191-200 ; 00104825 (ISSN) Amiri, S ; Naserkhaki, S ; Parnianpour, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The dummies currently used for predicting vehicle occupant response during frontal crashes or whole-body vibration provide insufficient information about spinal loads. Although they aptly approximate upper-body rotations in different loading scenarios, they overlook spinal loads, which are crucial to injury assessment. This paper aims to develop a modified dummy finite element (FE) model with a detailed viscoelastic lumbar spine. This model has been developed and validated against in-vitro and in-silico data under different loading conditions, and its predicted ranges of motion (RoM) and intradiscal pressure (IDP) maintain close correspondence with the in-vitro data. The dominant frequency... 

    A modeling study on utilizing SnS2 as the buffer layer of CZT(S, Se) solar cells

    , Article Solar Energy ; Volume 167 , 2018 , Pages 165-171 ; 0038092X (ISSN) Haghighi, M ; Minbashi, M ; Taghavinia, N ; Kim, D. H ; Mahdavi, S. M ; Kordbacheh, A. A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    CdS is conventionally used as the n-type buffer layer in chalcopyrite (CIG(S, Se)) and Kesterite (CZT(S, Se)) solar cells. CdS is toxic and there are wide attempts to find substitutes for it. Here, we suggest SnS2 as a possible alternative. SnS2 films were deposited by pulsed laser deposition (PLD), characterized to estimate carrier concentration and electron affinity values, and the obtained values were used to model a CZT(S, Se) solar cell. The experimental values of a benchmark CZT(S, Se) cell with efficiency of 12.3% were employed to obtain the density and energy position of defects in CZT(S, Se) and validating the model. We observed that SnS2 results in almost identical performance as... 

    A low cost Hydrokinetic Wells turbine system for oceanic surface waves energy harvesting

    , Article Renewable Energy ; Volume 156 , 2020 , Pages 610-623 Valizadeh, R ; Abbaspour, M ; Taeibi Rahni, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper provides a feasibility study on a low cost system called Hydrokinetic Wells turbine for surface wave energy conversion without using plenum chambers. The elimination of the plenum chamber and its complicated valve systems can reduce the expenses of wave energy conversion up to 23%.The feasibility process were done for high and low frequency conditions. For the low frequency waves, we offer the 300 rpm angular velocity as an optimum selection for further studies. For the high frequency condition a reliable analytical approach based on validated methods was developed. The analytical results indicate that a wells turbine with 60 cm diameter could produce up to 1600 Watts power in... 

    Proposing a general formula to calculate the critical velocities in tunnels with different cross-sectional shapes

    , Article Tunnelling and Underground Space Technology ; Volume 110 , 2021 ; 08867798 (ISSN) Savalanpour, H ; Farhanieh, B ; Afshin, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Among the parameters affecting the critical velocity in tunnel fires, the tunnel cross-sectional shape could significantly affect the tunnel fire characteristics, mainly due to the wall-bounded physics of the tunnel fire. Previously, the effects of the cross-sectional geometry of the tunnel were calculated using the non-dimensional analysis and hydraulic height of the tunnel. The dimensionless analysis using hydraulic height calculates only the effects of the tunnel sizes and does not capture the effects of the shape of the tunnel cross-section. Developing a 3D computational fluid dynamics tool using the body-fitted grids, the critical velocities are calculated for the 7 different... 

    Lake Urmia crisis and restoration plan: Planning without appropriate data and model is gambling

    , Article Journal of Hydrology ; Volume 576 , 2019 , Pages 639-651 ; 00221694 (ISSN) Danesh Yazdi, M ; Ataie Ashtiani, B ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Losing eight meters of water level over a 20-year period from 1996 to 2016 marked the Lake Urmia (LU) as one of the regional environmental crises. This condition has threatened biota life, intensified desertification around the lake, and raised social concerns by adversely impacting the inhabitants’ health and economy. In 2013, the Urmia Lake Restoration National Committee (ULRNC) started implementing certain management practices to stop the drying trend of LU, resulted in the cease of water level drop and stabilization of LU condition in 2016. Nevertheless, the restoration actions have not yet raised the lake to the water level as planned by the roadmap. This paper aims to describe and to... 

    A new multiphase and dynamic asphaltene deposition tool (MAD-ADEPT) to predict the deposition of asphaltene particles on tubing wall

    , Article Journal of Petroleum Science and Engineering ; Volume 195 , 2020 Naseri, S ; Jamshidi, S ; Taghikhani, V ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    As expounded, the precipitation and deposition of asphaltene particles in pipelines has been proved to be the most challenging flow assurance problem due to its unknown and complex behaviors. In this work, a new multicomponent, multiphase and dynamic tool was developed to model the aggregation and deposition of asphaltene particles in a bulk medium. The multiphase and dynamic asphaltene deposition tool, shortened as MAD-ADEPT is, in fact, a modified version of the previously developed ADEPT. The new tool was developed to make the asphaltene deposition and aggregation concepts in oil production wells more predictable. To tackle the complexity of the asphaltene problem, a bespoke algorithm was... 

    Determining water-oil relative permeability and capillary pressure from steady-state coreflood tests

    , Article Journal of Petroleum Science and Engineering ; Volume 205 , 2021 ; 09204105 (ISSN) Borazjani, S ; Hemmati, N ; Behr, A ; Genolet, L ; Mahani, H ; Zeinijahromi, A ; Bedrikovetsky, P ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    This study aims at the simultaneous determination of relative permeability and capillary pressure from steady-state corefloods. Besides using the measurements of pressure-drop across the core and average saturation under steady-state conditions, we use the transient data between the sequential steady states. The inverse algorithm is based on four type curves “stabilizsation period versus water-cut” revealed by asymptotic analysis of the transient solution near end-point saturations, and on the exponential shape of transition data histories observed by direct numerical runs. The transition measurements are approximated in the stabilisation periods by the type curves using non-linear...