Loading...
Search for: modified-electrode
0.006 seconds
Total 111 records

    Synthesis of Gold Nanoparticles and Study on Their Applications as a Catalyst and as a Carrier for the Radiomedicines

    , M.Sc. Thesis Sharif University of Technology Eskandari, Najmeh (Author) ; Outokesh, Mohammad (Supervisor) ; Ahmadi, Javad (Supervisor) ; Sadjadi, Soude (Co-Advisor)
    Abstract
    This thesis encompasses two parallel, but independent subjects as follow: The first part of the thesis deals with synthesis of bimetallic Ni-Au nanoparticles (Bi Ni-Au), and application of them as electrodes in the methanol fuel cells. The Bi Ni-Au nanoparticles for this purpose were synthesized by controlled reduction of HAuCl3 and NiCl3 in the aqueous medium using NaBH4 as reductant and PVP as stabilizer, and immobilized on the surface of a glassy carbon (GC) electrode by means of Nafion polymer. The obtained electrode then was conditioned in an alkaline solution by cyclic voltammetric method in potential range 100 -700 mV (vs. Ag/AgCl). Physicochemical characterizations of the... 

    Design and Fabrication Nanocomposite Modified Electrode Materials Based on Transition Metal Phosphide Using Copper Hydroxide Nanotubes as a Catalytic Substrate for Glucose Sensing in Non-Enzymatic Sensors

    , M.Sc. Thesis Sharif University of Technology Kazemi Abatari, Zeynab (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In this study, transition metal phosphide, with a high accessible surface and abundant electroactive centers, was used as an electrocatalyst to fabrication an electrochemical sensor of Gloucose. The direct growth of thin film of nanocomposite can be considered as an efficient method to modify the electrode surface, and the application of these modified electrodes as electrochemical sensors. nanocomposite of transition metal phosphide (CuCoP) were directly grown on Cu(OH)2 nanotubes (as-prepared on GCE) in order to design hierarchical core-shell nanostructure with using efficient, inexpensive and fast method. Here, Cu(OH)2 nanotubes not only served as substrate, but also steer the CuCoP to... 

    Fabrication of Nanocomposite Modified Materials Based on Bi-Metalic Transition Metal Sulfide Using Copper (I) Oxide Nanospheres as a Catalytic Substrate for Designation of Amperometric Non-Enzymatic Hydrazine and Hydrogen peroxide Sensors

    , M.Sc. Thesis Sharif University of Technology Darvishmehr, Zahra (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In this study, transition metal sulfide, with a high accessible surface and abundant electroactive centers, was used as an electrocatalyst to fabrication an electrochemical sensor of hydrazine and hydrogen peroxide. the direct growth of thin film of nanocomposite can be considered as an efficient method to modify the electrode surface, and the application of these modified electrodes as electrochemical sensors. the cobalt iron sulfide (CoFeS) nanosheets were directly grown on Cu2O nanospheres in order to design hierarchical nanocomposite by using efficient, inexpensive and fast method. Here, Cu2O nanospheres not only served as substrate, but also steer the CoFeS to attach on nanospheres... 

    Constructing and Investigation of the Electrochemical Behavior of Nanocomposite of Conducting Polymers on Copper Hydroxide Nanotubes; Application to Determination of Glucose

    , M.Sc. Thesis Sharif University of Technology Manafi, Reza (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    A novel amperometric non-enzymatic glucose (NEG) sensor is designed by a facile preparation method. It is made by electrodeposition of Cu clusters and converting them to Cu(OH)2 nanotubes (Cu(OH)2NTs) arrays along with thin-film electro-polymerized of spindle-shaped polypyrrole (PPy@Cu(OH)2NTs), which have been doped by using sodium Benzene-1,3- disulfonate as an anion dopant. The electrochemical performance of the modified electrode toward glucose detection is investigated by various electrochemical methods. Under the optimized conditions, a significant electrochemical response improvement is observed toward the electro-oxidation of glucose on the surface of PPy@Cu(OH)2NTs electrode... 

    Fabrication of Composite Electrode Materials Based on Bi-Metalic Metal-Organic Frameworks for Designation of Amperometric Non-Enzymatic Glucose Sensors

    , M.Sc. Thesis Sharif University of Technology Ataei Kachouei, Matin (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the present study, the method of direct growth was used to grew bi-metalic MOFs based on cobalt and zinc, as electroactive centers, for preparing electrochemical sensors for the determination of glucose. In comparison to most of the electrochemical sensing platforms based on MOFs for determining glucose, which suffer from some disadvantages like time-consuming synthesis procedures and using hazardous organic solvents, the proposed in-situ growth method is much faster and without any need to toxic organic solvents. Herein, cobalt and zinc-based MOFs were grown on the surface of glassy carbon electrode by the direct and rapid conversion of layered double hydroxide nanosheets intermediates.... 

    Fabrication of Applied Electrode Materials based on Metal-Organic Frameworks to Design Non-Enzymatic Electrochemical Sensing Platforms for Measuring of Glucose in Physiological Samples

    , M.Sc. Thesis Sharif University of Technology Ezzati, Milad (Author) ; Shahrokhian Dehkordi, Saeed (Supervisor)
    Abstract
    In the first work, the method of direct growth was used to grew MOFs based on cobalt, as electroactive centers, for preparing electrochemical sensors for the determination of glucose. In comparison to most of the electrochemical sensing platforms based on MOFs for determining glucose, which suffer from some disadvantages like time-consuming synthesis procedures and using hazardous organic solvents, the proposed in situ growth method is much faster and no need to toxic organic solvents. Herein, cobalt-based MOFs were grown on the surface of the reduced graphene oxide modified glassy carbon electrode by the direct and rapid conversion of cobalt hydroxide nanosheets intermediates. The... 

    Design, Construction and Application of Nanostructured Electrochemical Biosensor Based on Aptamers for Diagnosis Some of the Pathogenic Bacteria

    , Ph.D. Dissertation Sharif University of Technology Ranjbar, Saba (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    Since that pathogenic bacteria have a predominant role in different aspects of human life such as clinical analysis and spread of contagious disease, food quality control and monitoring of environmental microbial infections, the aim of these studies is design and construction of electrochemical and electro-optical biosensors based on nanomaterials employing specific aptamer and antibody for detection of different bacteria in various real samples. An impedimetric biosensor based on nanoporous gold (NPG) was presented in the first part of the thesis for detection of Salmonella typhimurium as one of the main food- borne pathogenic bacterium. Three-dimensional structure of NPG was synthesized... 

    Design and Development of Electrochemical DNA Nanobiosensors for Identification and Determination of Important Biomarkers

    , Ph.D. Dissertation Sharif University of Technology Salimian, Razieh (Author) ; Shahrokhian, Saeed (Supervisor) ; Kalhor, Hamid Reza (Co-Supervisor)
    Abstract
    The main purpose of this Ph.D. Thesis is to develop DNA-based biosensors using Label-free approaches applying simple, inexpensive and fast electrochemical techniques to measure the biological markers of cancer.In the first part, a simple protocol for detection of specific-sequence DNA is introduced. In this method carbon nanotube is used as a hybridization indicator. This label-free system provides the advantage of eliminating additional labeling procedure. As the signal enhances in the presence of MWCNT and decreases in the presence of target, the fabricated sensor is known as a signal-off device. The oxidation signal of Fe(CN)63-/4- is followed as an analytical signal to detect target... 

    Electrochemical Sensors Based on Electrodes Modified with Composites of Carbon Nanostructures and Polypyrrole; Application to Electrochemical Investigations and Determination of Nifedipine and Tizanidine

    , M.Sc. Thesis Sharif University of Technology Shamloofard, Maryam (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part, the electropolymerization of pyrrole was performed in the presence of Titan Yellow (TY) as a dopant anion on the surface of the electrode precoated with CNTs. The modified electrode was used to study the voltammetric response of tizanidine (TIZ). A remarkable increase was observed in the anodic peak current of TIZ on the surface of the modified electrode relative to the bare GCE. The surface morphology PPY/CNT/GCE was thoroughly characterized by scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques. Under the optimized analysis conditions, the modified electrode showed two linear dynamic ranges of 0.01 - 1 μM and 1-10 μM with a detection limit of 3 nM... 

    Chemical modification of the electrode surface by composites of Ag Nanoparticle Decorated on Multi Walled Carbon Nanotube; Application to Investigate the Electrochemical behavior and Determination of Risperidone and Isoxsuprine drugs

    , M.Sc. Thesis Sharif University of Technology Hafezi Kahnamoui, Mohammad (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    Nowadays, electrochemical sensors have numerous benefits, including simplicity,low cost, high selectivity and high sensitivity as an efficient and useful tool in various fields such as the environment, disease diagnostics, medical and medical surveillance, and Anti-terrorism security systems have become the focus of attention in the field of analytical measurements. In the meantime, carbon nanostructures and metal nanoparticles have been considered as suitable alternatives in order to improve their surface properties due to their unique electronic properties and mechanical and chemical stability. Since the determination of trace amounts of pharmaceutical and biological compounds is very... 

    Preparation and Investigation of the Electrochemical Behavior of Sensors Modified with Reduced Graphene Oxide nanohybrids for Electrochemical Determinations of Some Biologically Important Compounds

    , M.Sc. Thesis Sharif University of Technology Navabi, Mostafa (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first work, a stable composite film of silver nanoparticles decorated on reduced graphene oxide is easily prepared. The surface morphology of the modified electrode is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The electrochemical behavior of TNZ on the surface of the modified electrode is investigated by using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The prepared modified electrode acts as a highly sensitive platform for the voltammetric determination of tinidazole (TNZ). Voltammetric investigations demonstrated that, in comparison to the glassy carbon electrode individually coated with... 

    Preparation and Application of the Glassy Carbon Electrodes Modified with Carbon Nanomaterials for Studies of the Electrochemical Behavior and Quantitative Determination of Metoclopramide and Furazolidone

    , M.Sc. Thesis Sharif University of Technology Naderi, Leila (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part, a novel electrochemical sensor based on nanocellulose-carbon nanoparticles (NC–CNPs) nanocomposite film modified glassy carbon electrode (GCE) is developed for the analysis of metoclopramide (MCP). The electrochemical behavior of MCP was investigated on the surface of the modified electrode using cyclic voltammetry (CV). Characterization of the surface morphology and properties of NC/CNPs was carried out by scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). Effective experimental variables, such as scan rate, pH of the supporting electrolyte, drop size of the casted modifier suspension and accumulation... 

    Preparation and Investigation of Electrochemical Sensors for Determination of Pharmaceutical and Biological Compunds Based on Glassy Carbon Electrode Modified with Polypyrrole/Carbon Nanotube Composite

    , M.Sc. Thesis Sharif University of Technology Azimzadeh Sani, Mahnaz (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the recent years, conductive polymers are widely used in the design and construction of chemical and biological sensors.The polypyrrole due to features such as good thermal and chemical stability, ease of synthesis and better conductivity than other conductive polymers, atracts much attention. In order to modification of electrode surface,adhesiveand thin polymer films can be electropolymerized in the presence of organic or inorganic dopants on the surface of metal or carbon surfaces in aqueous or organic solutions. On the other hand carbon nanotubes by owing unique properties such as chemical stability and high electrical conductivity are good choice for electrod surface modification.... 

    Preparation and Investigation of the Electrochemical behavior of the Glassy Carbon Electrode Modified with Nanodiamond/Nanographite and NanoNi Composites: Applications to Pharmaceutical Determinations

    , M.Sc. Thesis Sharif University of Technology Koolivand, Zeinab (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    Part 1: In the first work, the electrochemical behavior of Ceftriaxone was thoroughly investigated at the surface of a glassy carbon electrode modified with nano-diamond graphite (NDG). The surface morphology and electrochemical properties of thin film modifier are characterized by Scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques. The prepared electrode showed a considerable improvement in the peak current of Ceftriaxone compared to either glassy carbon electrode or nanodiamond (NDs) modified glassy carbon electrode. Under the optimum conditions, the modified electrode showed a wide linear dynamic range of 0.04-10 μM with the detection limit of 10 nM for voltammetric... 

    Development and Application of Carbon Nanomaterials-based Polymer Modified Electrodes for Electrochemical Determination of Pharmaceutical Compounds

    , Ph.D. Dissertation Sharif University of Technology Kamalzadeh, Zahra (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In this thesis, in the first part, a promising electrochemical sensor was developed based on a layer by layer process by electropolymerization of pyrrole in the presence of new coccine (NC) as dopant anion on the surface of the CNTs pre-coated glassy carbon electrode (GCE). The modified electrode was used as a new and sensitive electrochemical sensor for voltammetric determination of sumatriptan (SUM). The results showed a remarkable increase in the anodic peak current of SUM in comparison to the bare GCE. In the second part, the electropolymerization of pyrrole was performed in the presence of Nitrazine Yellow (NY) as a dopant anion on the surface of the electrode precoated with CNTs. The... 

    Preparation and Application of Carbon Nanotube-polypyrrole Modified Electrode in Electrochemical Determination of Mesalazine

    , M.Sc. Thesis Sharif University of Technology Hosseini Yazdeli, Pouya (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In this work, the glassy carbon electrode (GCE) was modified with a thin layer of multi-walled carbon nanotubes (MWCNTs) and consequently, electrochemically deposited poly-pyrrole. The electrochemical behavior of mesalazine was studied on the surface of the modified electrode by applying linear sweep voltammetry (LSV). The electro-polymerization process and the electrochemical response toward mesalazine were investigated in the presence of different aromatic anion dopants including, benzenesulfonic acid (BSA), 1,3-benzenedisulfonic acid (1,3-BDSA), 1,5-naphthalenedisulfonic acid (1,5-NDSA) and new coccine (NC). By using 1,5-NDSA as dopant, a significant increase (∼418 times) was observed in... 

    Probing the Electrochemical Properties of Gold Electrode Modified with Edge-Functionalized Graphene and its Application

    , M.Sc. Thesis Sharif University of Technology Aghajani, Talin (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the present work, edge-functionalaized graphene was used as electrode material and its electrochemical properties were systematically characterized by electrochemical impedance spectroscopy and cyclic voltammetry. Two methods were applied to modify the gold electrode surface. First method was the self assembling process of graphene nanosheets on gold electrode surface. Second method was simply casting specific amounts of graphene suspension on the gold electrode surface. Nyquist plots show decrease of the charge transfer resistance on the electrode surface at both cases. In cyclic voltammetry studies, first electrode shows no significant changes while the second electrode exhibits... 

    Electrochemical Determination of Tyrosine and Tryptophan at the Surface of Pyrolytic Graphite Electrode Modified with Multi-Walled Carbon Nanotubes, New Coccine and Nitrazine

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Shiva (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    At the first part of this thesis, a pyrolitic graphite electrode (PGE) modified with new coccine/multi-walled carbon nanotubes film (NC/MWCNT) was applied as a sensitive electrochemical sensor for determination and study of electrochemical behavior of tyrosine (Tyr) in aqueous solutions. The results showed that NC/MWCNT caused a remarkable increase in the peak current so the NC/MWCNT/PGE electrode surface was far more sensitive to the concentration of Tyr than the PGE surface. The determination of Tyr was investigated by linear sweep voltammetry (LSV). Experimental parameters, such as scan rate, pH and amount of the modifier used on the PGE surface were optimized by monitoring the LSV... 

    Simultaneous Voltammetric Determination of Epinephrine and UricAcid in Presence of Ascorbic Acid Using Pyrolytic Graphite Electrode Modified with Nano- diamond/graphite Film & Voltammetric Determination of Levothyroxine at the Surface of Edge Plane Pyrolytic Graphite Electrode

    , M.Sc. Thesis Sharif University of Technology Khafaji, Mona (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    Part 1: A novel modified pyrolytic graphite electrode with nanodiamond/graphite was fabricated. The electrochemical response characteristics of the modified electrode toward the epinephrine (EN) and uric acid (UA) are studied by means of cyclic and linear sweep voltammetry. The structural morphology and thickness of the film was characterized by SEM technique.The prepared electrode shows an excellent catalytic activity in the electrochemical oxidation of EN and UA, leading to remarkable enhancements in the corresponding peak currents and lowering the peak potentials. The prepared modified electrode acts as a highly sensitive sensor for simultaneous determination of EN and UA in the presence... 

    Voltammetric Determination of Tryptophan and 5-Hydroxytryptophan Using Graphite Electrode Modified with a Thin Film of Graphite/Diamond Nano-mixture And Determination of omeprazole Using Graphite Electrode

    , M.Sc. Thesis Sharif University of Technology Bayat, Maryam (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    At the first part of this thesis, a pyrolitic graphite electrode (PGE) modified with graphite/nanodiamond film (GND) was applied as a sensitive electrochemical sensor for determination and study of electrochemical behavior of tryptophan (Trp) and 5-hydroxytryptophan (5-HTP) in aqueous solutions. The results showed that GND caused a remarkable increase in the peak currents so the GND/PGE electrode surface was more sensitive to the concentration of Trp and 5-HTP than the PGE surface. The determination of Trp and 5-HTP were investigated by stripping voltammetry. Experimental parameters such as scan rate, pH, accumulation conditions and amount of the modifier used on the PGE surface were...