Loading...
Search for: modified-electrode
0.009 seconds
Total 111 records

    Development of an electrochemical sensor based on (rGO-CNT) nanocomposite for raloxifene analysis

    , Article Materials Chemistry and Physics ; Volume 263 , 2021 ; 02540584 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Navabi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A novel modified electrode is reported for the electrochemical investigation of the oxidation mechanism and also voltammetric determination of raloxifene (RLX). The surface of the electrode was modified with a thin layer of reduced graphene oxide-carbon nanotube nano-composite (rGO-CNT) was prepared, and successfully employed for the electrochemical studies of RLX. The morphology of the sensor surface was characterized by using a scanning electron microscopy. RLX Oxidation response significantly increased at the GCE covered with rGO-CNT, regarding the bare and CNT or rGO functionalized GCE. Experimental parameters affecting the RLX response were optimized and mechanism of the RLX oxidation... 

    Facile preparation of a highly sensitive non-enzymatic glucose sensor based on the composite of Cu(OH)2 nanotubes arrays and conductive polypyrrole

    , Article Microchemical Journal ; Volume 169 , 2021 ; 0026265X (ISSN) Manafi Yeldaghermani, R ; Shahrokhian, S ; Hafezi Kahnamouei, M ; Sharif University of Technology
    Elsevier Inc  2021
    Abstract
    A novel amperometric non-enzymatic glucose sensor is designed by the facile preparation method. It is made by electrodeposition of Cu clusters and converting them to Cu(OH)2 nanotubes (Cu(OH)2NTs) arrays along with thin-film electro-polymerized of spindle-shaped polypyrrole (PPy@Cu(OH)2NTs), which have been doped by using sodium Benzene-1,3-disulfonate as an anion dopant. Various electrochemical methods investigate the electrochemical performance of the modified electrode toward glucose detection. Under the optimized conditions, a significant electrochemical response improvement is observed toward the electro-oxidation of glucose on the PPy@Cu(OH)2NTs electrode's surface relative to the... 

    Bimetallic CoZn-MOFs easily derived from CoZn-LDHs, as a suitable platform in fabrication of a non-enzymatic electrochemical sensor for detecting glucose in human fluids

    , Article Sensors and Actuators B: Chemical ; Volume 344 , 2021 ; 09254005 (ISSN) Ataei Kachouei, M ; Shahrokhian, S ; Ezzati, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In the present study, an in-situ, two-step, highly controllable, fast, green, and facile strategy for fabricating the bimetallic cobalt-zinc-based metal-organic frameworks (MOFs) is employed for designing a non-enzymatic glucose sensing platform. The structural characterization, as well as the phase investigation of materials in each step, are assessed by X-ray diffraction, energy-dispersive X-ray spectroscopy, elemental mapping, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. Furthermore, the electrocatalytic activity of the CoZn-BTC/GC fabricated electrode toward the electro-oxidation of glucose is examined by various electrochemical techniques,... 

    A sensitive voltammetric morphine nanosensor based on BaFe12O19 nanoparticle-modified screen-printed electrodes

    , Article Journal of the Iranian Chemical Society ; Volume 17, Issue 3 , 2020 , Pages 717-724 Bagherinasab, Z ; Beitollahi, H ; Yousefi, M ; Bagherzadeh, M ; Hekmati, M ; Sharif University of Technology
    Springer  2020
    Abstract
    Morphine is a strong opioid used for the treatment of moderate to severe pain. Its use is, however, associated with adverse effects including sedation, nausea, constipation, respiratory depression, and development of tolerance as well as dependence. Thus, in this work electrochemical oxidation of morphine has been done on BaFe12O19 nanoparticles of the modified electrode. BaFe12O19 nanoparticles of the modified graphite screen-printed electrode (GSPE) and the bare GSPE were compared, representing that the modified electrode takes advantages of higher sensitivities and selectivities with lower limit of detection. Differential pulse voltammetric procedure has been used to analyze data. Results... 

    Silver nanowires immobilized on gold-modified glassy carbon electrode for electrochemical quantification of atorvastatin

    , Article Journal of Electroanalytical Chemistry ; Volume 876 , November , 2020 Naseri, A ; Hormozi Nezhad, M. R ; Shahrokhian, S ; Asadian, E ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Development of simple yet precise sensing platforms for rapid determination of biological species and drugs is of paramount importance, not only for analysis of pharmaceutical formulations during the production stage, but also in clinical practices and medical diagnosis. In the present research, we report on the electrochemical determination of atorvastatin (ATOR) by using silver nanowires/gold-modified glassy carbon electrode (Ag NWs/Au/GCE). The modified electrode was constructed through a two-step procedure in which narrow silver nanowires synthesized via a polyol method are drop casted on a pre-modified GCE with electrodeposited gold particles. The results of XRD analysis indicated the... 

    Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates

    , Article Talanta ; Volume 210 , 2020 Shahrokhian, S ; Ezzati, M ; Hosseini, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, for the first time, we reported a fast and facile three-step in situ strategy for direct controllable growth of the Co3(BTC)2 MOFs thin films on the GCE, through the rapid conversion of the electrodeposited Co(OH)2 nano-flakes on rGO/GCE, to crystalline rectangular bar-shape structures of MOFs. X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and elemental mapping analysis used to the structural and morphological characterization of the well-synthesized MOFs. The as-prepared Co3(BTC)2 MOFs were used to construct a non-enzymatic sensing platform for determining the glucose... 

    An electrochemical sensing platform based on nitrogen-doped hollow carbon spheres for sensitive and selective isoprenaline detection

    , Article Journal of Electroanalytical Chemistry ; Volume 847 , 2019 ; 15726657 (ISSN) Shahrokhian, S ; Panahi, S ; Salimian, R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this work, uniform and monodisperse hollow carbon spheres (HCSs) are synthesized through two different processes using polydopamine (PDA), as a carbon precursor, and silica core as a template, under the modified Stöber condition. The surface morphology of the synthesized structures is characterized by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier-transform infrared spectroscopy (FT-IR). In the next step, the electrochemical behavior of isoprenaline (ISPN) is investigated by using glassy carbon electrode modified with a thin film of the synthesized hollow carbon spheres. The electrochemical characterization of the modified electrodes is... 

    Electrochemical sensing based on carbon nanoparticles: A review

    , Article Sensors and Actuators, B: Chemical ; Volume 293 , 2019 , Pages 183-209 ; 09254005 (ISSN) Asadian, E ; Ghalkhani, M ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The emergence of nanoscience and nanotechnology has opened up new horizons to researchers. In this regard, carbon nanomaterials are considered as the cornerstone of numerous investigations. Among various carbon nanostructures, “Carbon nanoparticles (CNPs)” have attracted a great deal of attention during the past few years due to their unique properties such as high surface area, non-toxicity, biocompatibility as well as simple and low-cost synthetic procedures via environmentally friendly routes. Thanks to these properties along with their interesting optical behavior, CNPs have found diverse applications in the fields of bioimaging, nanomedicine, photo/electro-catalysis, and bio/chemical... 

    Surface modification of glassy carbon electrode with the functionalized carbon nanotube for ultrasensitive electrochemical detection of risperidone

    , Article Journal of the Iranian Chemical Society ; Volume 15, Issue 7 , July , 2018 , Pages 1485-1494 ; 1735207X (ISSN) Shahrokhian, S ; Hafezi Kahnamoui, M ; Salimian, R ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Risperidone (RIS), one of the typical antipsychotics drugs, originally approved to be used for the mental illness treatment, especially schizophrenia, bipolar disorder, autism and major depression. In the present study, different carbon nanostructures including functionalized multi-walled carbon nanotubes (F-MWCNTs), carbon nanoparticles, nanodiamond-graphite and reduced graphene oxide were employed for modification of the surface of glassy carbon electrode (GCE) for ultrasensitive detection of RIS. The most significant increase in the anodic peak current of RIS was observed on F-MWCNTs-modified electrode (compared to the other modified electrodes and bare GCE). The influence of different... 

    Simultaneous electrodeposition of reduced graphene oxide/ag nanoparticles as a sensitive layer for voltammetric determination of tinidazole

    , Article Nano ; Volume 12, Issue 6 , 2017 ; 17932920 (ISSN) Shahrokhian, S ; Navabi, M ; Mohammadi, R ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2017
    Abstract
    A stable composite film of silver nanoparticles (Ag NPs) decorated on reduced graphene oxide is prepared by a two-step simple procedure. The surface morphology of the modified electrode is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The electrochemical behavior of tinidazole (TNZ) on the surface of the modified electrode is investigated by linear sweep voltammetry and electrochemical impedance spectroscopy. The prepared composite electrode acts as a highly sensitive platform for the voltammetric determination of TNZ, leading to a significant increase in the reduction peak current of TNZ. The effects of experimental parameters such as the... 

    A novel enzyme based biosensor for catechol detection in water samples using artificial neural network

    , Article Biochemical Engineering Journal ; Volume 128 , 2017 , Pages 1-11 ; 1369703X (ISSN) Maleki, N ; Kashanian, S ; Maleki, E ; Nazari, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Biosensors could be used as digital devices to measure the sample infield. Consequently, computational programming along with experimental achievements are required. In this study, a novel biosensor/artificial neural network (ANN) integrated system was developed. Poly (3,4-ethylenedioxy-thiophene)(PEDOT), graphene oxide nano-sheets (GONs) and laccase (Lac) were used to construct a biosensor. The simple and one-pot process was accomplished by electropolymerizing 3,4-ethylenedioxy-thiophene (EDOT) along with GONs and Lac as dopants on glassy carbon electrode. Scanning electron microscopy (SEM) and electrochemical characterization were conducted to confirm successful enzyme entrapment. The... 

    Application of glassy carbon electrode modified with a carbon nanoparticle/melamine thin film for voltammetric determination of raloxifene

    , Article Journal of Electroanalytical Chemistry ; Volume 780 , 2016 , Pages 126-133 ; 15726657 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Balotf, H ; Salimian, R ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    As a selective estrogen receptor modulator, raloxifene (RXF) prevent of osteoporosis in postmenopausal women by estrogenic actions on bone and decreases the risk of invasive breast cancer by anti-estrogenic actions on the breast and uterus tissue. However, RXF may increase the risk of blood clots, including deep vein thrombosis and pulmonary embolism. For the first time glassy carbon electrode modified with a thin film of melamine/carbon nanoparticles (CNPs/Mela) was constructed and used for the sensitive voltammetric determination of RXF. In comparison with unmodified electrode, the presence of the CNPs/Mela film resulted in a remarkable increase in the peak currents and sharpness of the... 

    A low cost and highly active non-noble alloy electrocatalyst for hydrazine oxidation based on nickel ternary alloy at the surface of graphite electrode

    , Article Journal of Electroanalytical Chemistry ; Volume 763 , 2016 , Pages 134-140 ; 15726657 (ISSN) Jafarian, M ; Rostami, T ; Mahjani, M. G ; Gobal, F ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    The electrocatalytic oxidation of hydrazine was studied over Ni, Cu, Co and Ni-based ternary alloy on graphite electrodes in alkaline solution. The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and the catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of hydrazine, the modified Ni-based ternary alloy electrode (G/NiCuCo) exhibited a good catalytic activity for the oxidation of hydrazine at a reduced overpotential and it has a significant high... 

    Modification of the electrode surface by ag nanoparticles decorated nano diamond-graphite for voltammetric determination of ceftizoxime

    , Article Electroanalysis ; Volume 28, Issue 3 , 2016 , Pages 469-476 ; 10400397 (ISSN) Shahrokhian, S ; Ranjbar, S ; Ghalkhani, M ; Sharif University of Technology
    Wiley-VCH Verlag  2016
    Abstract
    A modified glassy carbon electrode with a film of nano diamond-graphite nano mixture decorated with Ag nanoparticles (AgNPs-NDG/GCE) was constructed and used for sensitive voltammetric determination of ceftizoxime (CFX). Morphology of AgNPs-NDG/GCE has been examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Experimental variables such as deposited amount of the modifier suspension, pH of the supporting electrolyte and accumulation potential and time were optimized by monitoring of CV and LSV responses of CFX. The results illustrate that AgNPs-NDG/GCE exhibits an excellent electrocatalytic effect in the electro-oxidation of CFX that leads to a considerable... 

    Nanocellulose/Carbon Nanoparticles Nanocomposite Film Modified Electrode for Durable and Sensitive Electrochemical Determination of Metoclopramide

    , Article Electroanalysis ; Volume 27, Issue 11 , November , 2015 , Pages 2637-2644 ; 10400397 (ISSN) Shahrokhian, S ; Naderi, L ; Ghalkhani, M ; Sharif University of Technology
    Wiley-VCH Verlag  2015
    Abstract
    A novel electrochemical sensor based on nanocellulose-carbon nanoparticles (NC-CNPs) nanocomposite film modified glassy carbon electrode (GCE) is developed for the analysis of metoclopramide (MCP). Atomic force microscopy, scanning electron microscopy and electrochemical impedance spectroscopy were used to characterize the roughness, surface morphology and performance of the deposited modifier film on GCE. SEM image demonstrated that modifier nanoparticles are uniformly deposited on GCE, with an average size of less than 50nm. The electrochemical behavior of MCP and its oxidation product is studied using linear sweep and cyclic voltammetry over a wide pH range on NC-CNPs modified glassy... 

    Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir

    , Article Materials Science and Engineering C ; Volume 53 , 2015 , Pages 134-141 ; 09284931 (ISSN) Shahrokhian, S ; Azimzadeh, M ; Amini, M. K ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    A novel voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electropolymerized layer of tiron-doped polypyrrole was developed and the resulting electrode was applied for the determination of acyclovir (ACV). The surface morphology and property of the modified electrode were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy techniques. The electrochemical performance of the modified electrode was investigated by means of linear sweep voltammetry (LSV). The effect of several experimental variables, such as pH of the supporting electrolyte, drop size of... 

    Electrodeposition of Copper Oxide Nanoparticles on Precasted Carbon Nanoparticles Film for Electrochemical Investigation of anti-HIV Drug Nevirapine

    , Article Electroanalysis ; Volume 27, Issue 8 , June , 2015 , Pages 1989-1997 ; 10400397 (ISSN) Shahrokhian, S ; Kohansal, R ; Ghalkhani, M ; Amini, M. K ; Sharif University of Technology
    Wiley-VCH Verlag  2015
    Abstract
    This work describes the development of a novel electrochemical sensor based on electrodeposition of copper oxide nanoparticles onto carbon nanoparticle (CNP) film modified electrode for the analysis of the anti-HIV drug, nevirapine (NEV). The electrochemical experiments were performed using linear sweep and cyclic voltammetry. Atomic force microscopy was applied for surface characterization of the deposited modifier film (CuO-CNP) on glassy carbon electrode (GCE). No oxidation peak was observed for NEV on the bare GCE, but both CNP-GCE and CuO-CNP-GCE showed a distinctive anodic response towards NEV with considerable enhancement (276-fold and 350-fold, respectively) compared to CuO-GCE. The... 

    Investigation of the electrochemical behavior of mesalazine on the surface of a glassy carbon electrode modified with CNT/PPY doped by 1,5-naphthalenedisulfonic acid

    , Article Electroanalysis ; Volume 25, Issue 11 , 2013 , Pages 2481-2491 ; 10400397 (ISSN) Shahrokhian, S ; Hosseini, P ; Kamalzadeh, Z ; Sharif University of Technology
    2013
    Abstract
    A glassy carbon electrode (GCE) was modified with a thin layer of multiwalled carbon nanotubes (MWCNTs) and subsequently, electrochemically deposited poly-pyrrole. The electrochemical behavior of mesalazine was studied on the surface of the modified electrode by applying linear sweep voltammetry (LSV). The electropolymerization process and the electrochemical response toward mesalazine were investigated in the presence of different aromatic anion dopants including, benzenesulfonic acid (BSA), 1,3-benzenedisulfonic acid (1,3-BDSA), 1,5-naphthalenedisulfonic acid (1,5-NDSA) and new coccine (NC). By using 1,5-NDSA as dopant, a significant increase (~418 times) in the peak current of mesalazine... 

    Adsorptive stripping differential pulse voltammetric determination of mebendazole at a graphene nanosheets and carbon nanospheres/chitosan modified glassy carbon electrode

    , Article Sensors and Actuators, B: Chemical ; Volume 185 , 2013 , Pages 669-674 ; 09254005 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Sharif University of Technology
    2013
    Abstract
    For the first time graphene nanosheets and carbon nanospheres/chitosan (GNS-CNS/CS) based nanocomposite film modified electrode was used for the electro-oxidation of mebendazole (MD). MD is a benzimidazole drug that is used to treat human infections caused by parasitic worms. MD causes slow immobilization and death of the worms by selectively and irreversibly blocking uptake of glucose. The electrochemical behavior of MD at GNS-CNS/CS modified glassy carbon electrode has been investigated using cyclic and differential pulse voltammetry in aqueous media at different pHs. The prepared electrode showed an excellent electrochemical activity toward the electro-oxidation of MD leading to a... 

    Zeolite encapsulated Ni(II)-Schiff-base complex: A novel size-selective electro-catalyst for the determination of the purity of stevioside

    , Article Talanta ; Volume 108 , April , 2013 , Pages 19-29 ; 00399140 (ISSN) Rashvand Avei, M ; Jafarian, M ; Etezadi, S ; Gobal, F ; Khakali, M ; Rayati, S ; Ghasem Mahjani, M ; Sharif University of Technology
    2013
    Abstract
    Ship-in-a-bottle complex of nickel(II) containing the ligand N,N′-bis(2,4-dihydroxyacetophenone)-2,2-dimethylpropandiimine (H 2{salnptn(4-OH)2}) has been synthesized in zeolite Y. The characteristics of the encapsulated complex are identified by the methods of EDX, SEM, XRD, FT-IR and cyclic voltammetry. A catalytic effect in the electrochemical oxidation of glucose, fructose and sucrose, and a blocking effect in stevioside oxidation are demonstrated on the Ni II{salnptn(4-OH)2}-Y/CPE. The effects of some parameters, such as potential scan rate and concentration of carbohydrates are investigated. The rate constants for the catalytic reaction (k′) of carbohydrates are also obtained. The...