Loading...
Search for: modulators
0.014 seconds
Total 565 records

    Investigation of a radiative sky cooling module using phase change material as the energy storage

    , Article Applied Energy ; Volume 321 , 2022 ; 03062619 (ISSN) Kiyaee, S ; Khalilmoghadam, P ; Behshad Shafii, M ; Moshfegh, A. Z ; Hu, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Radiative sky cooling (RSC) systems have enjoyed a privileged position in the research community due to generating cooling energy without consuming electricity using the open atmospheric window and infrared emission to the sky. However, the system's justification occurs when it reaches a temperature below the minimum 24-hour ambient temperature. This study utilizes phase change materials (PCM) as the energy storage of a hybrid daytime photovoltaic-thermal and nighttime RSC module and investigates the nocturnal cooling energy-saving potential of the system at different phase transition temperatures. After being validated by the experimental data in the literature, the simulated model was used... 

    Immunomodulating hydrogels as stealth platform for drug delivery applications

    , Article Pharmaceutics ; Volume 14, Issue 10 , 2022 ; 19994923 (ISSN) Rezaei, Z ; Yilmaz Aykut, D ; Tourk, F. M ; Bassous, N ; Barroso Zuppa, M ; Shawl, A. I ; Ashraf, S. S ; Avci, H ; Hassan, S ; Sharif University of Technology
    MDPI  2022
    Abstract
    Non-targeted persistent immune activation or suppression by different drug delivery platforms can cause adverse and chronic physiological effects including cancer and arthritis. Therefore, non-toxic materials that do not trigger an immunogenic response during delivery are crucial for safe and effective in vivo treatment. Hydrogels are excellent candidates that can be engineered to control immune responses by modulating biomolecule release/adsorption, improving regeneration of lymphoid tissues, and enhancing function during antigen presentation. This review discusses the aspects of hydrogel-based systems used as drug delivery platforms for various diseases. A detailed investigation on... 

    Design guidelines for a tunable SOI based optical isolator in a partially time-modulated ring resonator

    , Article IEEE Photonics Journal ; Volume 14, Issue 5 , 2022 ; 19430655 (ISSN) Zarif, A ; Mehrany, K ; Memarian, M ; Jamshidi, K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this paper, we present the design guidelines for a tunable optical isolator in an SOI-based ring resonator with two small time-modulated regions. By considering a physical model, the proper geometrical and modulation parameters are designed, based on a standard CMOS foundry process. The effect of the variation of the key parameters on the performance of the isolator is explained by two counter-acting mechanisms, namely the separation between the resonance frequencies of counter-rotating modes and energy transfer to the side harmonic. We show that there is a trade-off between these parameters to obtain maximum isolation. Consequently, by applying the quadrature phase difference one can... 

    Compound short- and long-term memory for memory augmented neural networks

    , Article Engineering Applications of Artificial Intelligence ; Volume 116 , 2022 ; 09521976 (ISSN) Bidokhti, A ; Ghaemmaghami, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Adding memory to artificial intelligence systems in an effective way has been addressed by researchers for many years. Recurrent neural networks and long short-term memories (LSTMs), among other neural network systems, have some inherent memory capabilities. Recently, in memory augmented neural networks, such as neural Turing machine (NTM) and its variants, a separate memory module is implemented, which can be accessed via read and write heads. Despite its capabilities in simple algorithmic tasks, such as copying and repeat copying, neural Turing machines fail when doing complex tasks with long-term dependencies due to their limited memory capacity. In this paper, we propose a new memory... 

    A cycle by cycle FSK demodulator with high sensitivity of 1% frequency modulation index for implantable medical devices

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 69, Issue 11 , 2022 , Pages 4682-4690 ; 15498328 (ISSN) Razavi Haeri, A. A ; Safarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper presents a cycle by cycle Frequency Shift Keying (FSK) demodulator, able to demodulate a FSK signal with 1% frequency modulation index (MI), in a single cycle. Based on the proposed demodulation scheme, a high rate data transmission link can be established through a high-Q inductive coupling link, breaking the basic tradeoff between the power transfer efficiency (PTE) and data rate in single carrier wireless power and data transfer systems. Designed and simulated with 0.18μ m CMOS process, the proposed FSK demodulator, detects successfully a 5Mbps data with a carrier frequency of 5MHz. A test chip is fabricated in 180nm CMOS technology. Measurement results shows that the... 

    Ruthenium/Ruthenium oxide hybrid nanoparticles anchored on hollow spherical Copper-Cobalt Nitride/Nitrogen doped carbon nanostructures to promote alkaline water splitting: Boosting catalytic performance via synergy between morphology engineering, electron transfer tuning and electronic behavior modulation

    , Article Journal of Colloid and Interface Science ; Volume 626 , 2022 , Pages 1070-1084 ; 00219797 (ISSN) Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Exploring bi-functional electrocatalysts with excellent activity, good durability, and cost-effectiveness for electrochemical hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte is a critical step towards a sustainable hydrogen economy. Three main features such as high density of active sites, improved charge transfer, and optimized electronic configuration have positive effects on the electrocatalyst activity. In this context, understanding structure–composition–property relationships and catalyst activity is very important and highly desirable. Herein, for the first time, we present the design and fabrication of novel MOF-derived ultra-small Ru/RuO2 nanoparticles... 

    Reciprocity condition in synchronously time-periodic bianisotropic materials

    , Article Physical Review B ; Volume 106, Issue 21 , 2022 ; 24699950 (ISSN) Boshgazi, S ; Memarian, M ; Mehrany, K ; Rejaei, B ; Sharif University of Technology
    American Physical Society  2022
    Abstract
    In this paper, a sufficient reciprocity condition for general time-periodic modulated bianisotropic media is extracted from first principles. Reciprocity of various cases of significant importance, including stationary bianisotropic media, time-varying (TV) isotropic media, TV anisotropic media, and TV bianisotropic media, are investigated using this condition. We prove that synchronous time modulation of stationary bianisotropic yet reciprocal media (chiral, pseudochiral, and achiral) does not lead to nonreciprocity, unless the modulation function breaks time reversal symmetry. This is in contrast to recently published research. The theoretical results are validated using in-house finite... 

    Design and fabrication of a micro-opto-mechanical-systems accelerometer based on intensity modulation of light fabricated by a modified deep-reactive-ion-etching process using silicon-on-insulator wafer

    , Article Journal of Vacuum Science and Technology B ; Volume 40, Issue 4 , 2022 ; 21662746 (ISSN) Gholamzadeh, R ; Gharooni, M ; Salarieh, H ; Akbari, J ; Sharif University of Technology
    AVS Science and Technology Society  2022
    Abstract
    Accelerometers that work based on intensity modulation of light are more sensitive, economically feasible, and have a simpler fabrication process compared to wavelength modulation. A micro-opto-electro-mechanical-system accelerometer based on intensity modulation of light is designed and fabricated. A movable shutter that is attached to the proof mass is designed to change the intensity of light. Moreover, the mechanical part is designed to improve the overall sensitivity and linear behavior in the measurement range. The designed accelerometer is fabricated by a deep-reactive-ion-etching (DRIE) process. The DRIE process used in this report is based on a Bosch-like process, which uses SF 6... 

    A comparative study on bifacial photovoltaic/thermal modules with various cooling methods

    , Article Energy Conversion and Management ; Volume 263 , 2022 ; 01968904 (ISSN) Ma, T ; Kazemian, A ; Habibollahzade, A ; Salari, A ; Gu, W ; Peng, J ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The bifacial photovoltaic/thermal module is an emerging concept that can provide electricity and heat simultaneously, taking advantage of both front and rear sides of the panel; therefore, exhibiting a better performance compared to a conventional photovoltaic module or photovoltaic thermal module. In this study, four configurations of the bifacial photovoltaic/thermal module with different cooling methods have been proposed, i.e., cooling performed at either the upper or the lower surface, in parallel (applied to both upper and lower surfaces having similar start/endpoints), and swinging air back and forth (by guiding the air over the upper and lower surfaces, respectively). The... 

    PIPF-DRAM: Processing in precharge-free DRAM

    , Article 59th ACM/IEEE Design Automation Conference, DAC 2022, 10 July 2022 through 14 July 2022 ; 2022 , Pages 1075-1080 ; 0738100X (ISSN); 9781450391429 (ISBN) Rohbani, N ; Soleimani, M. A ; Sarbazi Azad, H ; ACM Special Interest Group on Design Automation (SIGDA); IEEE CEDA ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    To alleviate costly data communication among processing cores and memory modules, parallel processing-in-memory (PIM) is a promising approach which exploits the huge available internal memory bandwidth. High capacity, wide row size, and maturity of DRAM technology, make DRAM an alluring structure for PIM. However, dense layout, high process variation, and noise vulnerability of DRAMs make it very challenging to apply PIM for DRAMs in practice. This work proposes a PIM structure which eliminates these DRAM limitations, exploiting a precharge-free DRAM (PF-DRAM) structure. The proposed PIM structure, called PIPF-DRAM, performs parallel bitwise operations only by modifying control signal... 

    Lateral BN-BCN heterostructure tunneling transistor with large current modulation

    , Article ACS Applied Electronic Materials ; Volume 4, Issue 7 , 2022 , Pages 3520-3524 ; 26376113 (ISSN) Horri, A ; Faez, R ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    This paper, for the first time, presents a lateral tunneling transistor based on a two-dimensional boron nitride (BN) and hexagonal boron-carbon-nitrogen (hBCN) heterostructure. The device operation is analyzed based on a non-equilibrium Greens Function (NEGF) method and an atomistic tight-binding (TB) model. The TB hopping parameters are achieved by fitting the bandstructure to density functional theory (DFT) results. This model has been used to calculate the electrical characteristics of the device, such as ION/IOFFratio, subthreshold swing, and intrinsic gate-delay time. The results indicate a switching ratio of over eight orders of magnitude, much higher than the previous two-dimensional... 

    Nanoplasma-Based millimeter-wave modulators on a single metal layer

    , Article IEEE Electron Device Letters ; Volume 43, Issue 8 , 2022 , Pages 1355-1358 ; 07413106 (ISSN) Samizadeh Nikoo, M ; Dilmaghanian, M. O ; Farzaneh, F ; Matioli, E ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Fundamental constraints imposing power-frequency trade-offs in conventional electronics have stimulated research on alternative technologies for millimeter-wave and sub-millimeter-wave applications. In this work, we use the picosecond threshold firing of nanoplasma switches to demonstrate on-chip millimeter-wave modulators that rely only on a single metal layer. We show amplitude shift keying (ASK) modulation with self-synthesized carrier frequencies up to 66 GHz (limited by the bandwidth of our experimental setup), with output powers up to 30 dBm. These all-metal nanoplasma modulators are low cost, and generally compatible with different platforms, from CMOS and III-V compounds to flexible... 

    Accurate modulation classification under impaired wireless channels via shallow convolutional neural networks

    , Article Physical Communication ; Volume 53 , 2022 ; 18744907 (ISSN) Ahangarzadeh, A ; Hashemi, M ; Nezamalhosseini, S. A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Classifying the modulation type of radio signals plays an important role in current and future wireless communication systems. We present a modulation classification method based on convolutional neural networks that reaches high accuracy in face of various channel characteristics and signal conditions without requiring the network to have a very large depth. Experiment results show that the proposed method reaches accurate classification under different system impairment settings that include sampling rate offset, carrier frequency offset, multi-path fading, and additive white Gaussian noise. For instance, compared to a state-of-the-art method, accuracy is improved up to 25% in classifying... 

    A simplified implementation of NLSPWM control strategy for SqZS inverter via model-driven processor programming method

    , Article International Journal of Circuit Theory and Applications ; Volume 50, Issue 8 , 2022 , Pages 2687-2708 ; 00989886 (ISSN) Noroozi, M ; Haghjoo, F ; Javadi, H ; Zolghadri, M. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    The transformerless single-phase semi-quasi-Z-source inverter (SqZSI) has a nonlinear gain curve and requires nonlinear sinusoidal pulse width modulation (NLSPWM) to achieve sinusoidal voltage at the output AC terminal. Although the SqZSI provides some advantages, for example, leakage current elimination, doubly grounded, low volume, and low cost, it needs nonlinear modulation control. The NLSPWM is relatively complex among single-phase modulation methods and it is considered a disadvantage for this topology, so this paper presents a model-driven processor programming method that facilitates the implementation of NLSPWM. The developed programming method utilizes a Blockset environment in... 

    A novel ratiometric fluorescent approach for the modulation of the dynamic range of lateral flow immunoassays

    , Article Advanced Materials Technologies ; Volume 7, Issue 8 , 2022 ; 2365709X (ISSN) Sena-Torralba, A ; Torné Morató, H ; Parolo, C ; Ranjbar, S ; Farahmand Nejad, M. A ; Álvarez Diduk, R ; Idili, A ; Hormozi Nezhad, M. R ; Merkoçi, A ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The majority of lateral flow assays (LFAs) use single-color optical labels to provide a qualitative naked-eye detection, however this detection method displays two important limitations. First, the use of a single-color label makes the LFA prone to results misinterpretation. Second, it does not allow the precise modulation of the sensitivity and dynamic range of the test. To overcome these limitations, a ratiometric approach is developed. In particular, using anti-HIgG functionalized red-fluorescent quantum dots on the conjugate pad (as target dependent labels) and blue-fluorescent nanoparticles fixed on the test line (as target independent reporters), it is possible to generate a wide color... 

    A new modeling and control scheme for cascaded split-source converter cells

    , Article IEEE Transactions on Industrial Electronics ; Volume 69, Issue 8 , 2022 , Pages 7618-7628 ; 02780046 (ISSN) Montazeri, S. H ; Milimonfared, J ; Zolghadri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Cascaded split-source inverter (CSSI) is a new single-stage modular multilevel topology. Each cell of this converter converts dc to ac power in the buck or boost operation mode without any additional power switch. This article develops a design method based on a detailed model for CSSI. This model shows that energy storage elements experience double-fundamental frequency ripples besides high-frequency ones. It accurately calculates voltage gains and capacitor voltage and inductor current ripples. On the other hand, common carrier-based multilevel modulations have been modified in terms of both reference and carrier signals to control the inverter under symmetric and asymmetric conditions.... 

    Frequency conversion in time-varying graphene microribbon arrays

    , Article Optics Express ; Volume 30, Issue 18 , 2022 , Pages 32061-32073 ; 10944087 (ISSN) Salehi, M ; Rahmatian, P ; Memarian, M ; Mehrany, K ; Sharif University of Technology
    Optica Publishing Group (formerly OSA)  2022
    Abstract
    We investigate the possibility of frequency conversion in time-varying metasurfaces, composed of graphene microribbon arrays (GMRAs) with time-periodic modulation of their conductivity. We present a quasi-static model for the interaction of light with a temporally modulated metasurface, as well as an accurate analytical treatment of the problem of time-varying GMRAs. Results coming from numerical simulations are also available. We provide corrections to a previous related proposal for frequency conversion and refute the possibility of attaining frequency shifts not equal to an integral multiple of modulation frequency. Contrary to the preceding results, our findings show that efficient... 

    Engineering floquet dynamical quantum phase transitions

    , Article Physical Review B ; Volume 106, Issue 9 , 2022 ; 24699950 (ISSN) Naji, J ; Jafari, R ; Zhou, L ; Langari, A ; Sharif University of Technology
    American Physical Society  2022
    Abstract
    Floquet dynamical quantum phase transitions (FDQPTs) are signified by recurrent nonanalytic behaviors of observables in time. In this work, we introduce a quench-free and generic approach to engineer and control FDQPTs for both pure and mixed Floquet states. By applying time-periodic modulations with two driving frequencies to a general class of spin chain model, we find multiple FDQPTs within each driving period. The model is investigated with equal, commensurate and incommensurate driving frequencies. The nonanalytic cusps of return probability form sublattice structures in time domain. Notably, the number and time locations of these cusps can be flexibly controlled by tuning the... 

    The association between motor modules and movement primitives of gait: A muscle and kinematic synergy study

    , Article Journal of Biomechanics ; Volume 134 , 2022 ; 00219290 (ISSN) Esmaeili, S ; Karami, H ; Baniasad, M ; Shojaeefard, M ; Farahmand, F ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In spite of the extensive literature on the analysis of the muscle synergies during gait, the functionality of these synergies has not been studied in detail. This study explored the relationship between the motor modules and the kinematic maneuvers involved in human walking. Motion and surface electromyography data (of 28 trunk and lower extremity muscles) were acquired from ten healthy subjects during ten trials of self-selected speed gait each. The joint angle trajectories were half-wave rectified and divided into two independent positive directional degrees-of-freedom. The muscle and kinematic synergies were both extracted using the non-negative matrix factorization (NNMF) technique and... 

    Significant pathological voice discrimination by computing posterior distribution of balanced accuracy

    , Article Biomedical Signal Processing and Control ; Volume 73 , 2022 ; 17468094 (ISSN) Pakravan, M ; Jahed, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The ability to speak lucidly plays a key role in social relations. Consequently, the role of the larynx is quite important, and timely diagnosis of laryngeal diseases has proved to be crucial. In this study, a simple computational model for inverse of speech production model is employed to extract the glottal waveform using speech signal. This waveform has useful information about vocal folds performance in terms of providing evidence for distinguishing pathological disorders. Furthermore, obtaining the significance of classification results is important, because it leads to reliable inferences. This study utilizes the sustained vowel sound /a/ and a well-referenced database, namely MEEI. In...