Loading...
Search for: nanocarrier
0.006 seconds
Total 64 records

    Investigating the Effect of Geometric Shape and Properties of Protein Corona on Drug Release Using Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Mohammadi Hosseinabadi, Hossein (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    In novel drug delivery systems, once nanocarriers confront the biological milieu, their surface is rapidly covered with a layer of biomolecules (i.e., “protein corona”) which play an important role in their drug release rate. Various experimental studies have been done to elucidate the effect of nanoparticles properties on the drug release rate in different biological applications. The physical and geometrical properties of protein corona totally influence on the release profile. In this study, we proposed a suitable finite element model which contains the nanoparticles and the protein layer with their properties in the biological milieu. To this end, diffusion parameters including diffusion... 

    Design and Fabrication of Drug-loaded Nanoparticles to Prevent Fibrillation of Alpha-synuclein in Parkinson

    , M.Sc. Thesis Sharif University of Technology Nayebzadeh, Ramin (Author) ; Mashayekhan, Shohreh (Supervisor) ; Morshedi, Dina (Supervisor)
    Abstract
    The purpose of this study is to assess the inhibitory effects of an appropriate nanoparticles loaded with gallic acid on the fibrillation of alpha-synuclein. Alpha-synuclein is a major component of protein plaques in synucleinopathies, particularly Parkinson’s disease. Gallic acid (GA, 3,4,5-trihydroxy benzoic acid) is a well–known small molecule which can inhibit the formation of α-synuclein fibrils. For the process of fibrillation, purified protein was incubated at 37◦C and pH 7.2. Fibrillation was analyzed by the standard fibril methods.after that investigated fabricating of gallic acid trapped in the chitosan nanoparticles and gallic acid loaded in chitosan –coated mesoporous silica... 

    Design of Drug Nanocarriers Based on Mesoporous Silica Nanoparticles Coated with Smart Polymers

    , Ph.D. Dissertation Sharif University of Technology Mazaheri Tehrani, Zahra (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Mesoporous silica nanoparticles have broad application in drud delivery systems due to their porous structure, functionalization, biocompatibility, high surface area and pore volume. Neverthless, pure mesoporous silica nanoparticles without functionality were not smart material and could not release drug in triggered and controlled manner. For this reason, using smart polymeric coating would be considered. Polymer shells also provide colloidal stability, improved blood circulation lifetime and reduced toxicity which are crucial for efficient in vivo drug delivery. Inflammatory and tumor tissue have low pH and high temperature as compared to health tissue. Therefore, using pH and... 

    Design of Oxidative Stress Nanoparticles for Targeted drug Delivery to the Posterior Segment of the Eye and Breast Cancer

    , Ph.D. Dissertation Sharif University of Technology Behroozi, Farnaz (Author) ; Abdekhodaei, Mohammad Jafar (Supervisor) ; Baharvand, Hossein (Supervisor) ; Satarian, Leila ($item.subfieldsMap.e) ; Sadeghi, Hamid ($item.subfieldsMap.e)
    Abstract
    The oxidation-reduction (redox) responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA)2]. Resulting in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as redox-sensitive linkage, was designed, so it is located at the hydrophilic/hydrophobic hinge to allow complete micelles collapse and efficient drug release, in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations above the critical micelle concentration (CMC) in an aqueous environment. Dynamic light... 

    Synthesis of Magnetic Fe3o4 Nanoparticle and Coating It with Modified Starch for Targeted Delivery of Doxorubicin Anticancer Drug

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Mahshid (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    One of the major problems in cancer treatment is side effects of treatments. Today, scientists have developed smart nanocarrier for diagnosis and drug delivery that can circulate in the bloodstream, pass the body's immune system to kill cancer cells and attach to the cancer cells to deliver drugs, without the side effects that are in other treatments, such as chemotherapy. magnetic nanoparticles coated by biodegradable polymers are one of the smart polymers. In this study, iron oxide nanoparticles with amine group on their surface are coated by starch modified by methyl acrylate then reacted with hydrazine and hydrazide functional group is formed that can chemically be bonded with the... 

    Loading of Doxorubicin on Stimuli-Responsive Nanocarriers and Investigation of its Release

    , M.Sc. Thesis Sharif University of Technology Yaghoubi, Mahshid (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Drug targeting to specific organs and tissues has become one of the critical endeavors of the new century. Magnetic nanoparticles have gained a lot of attention in biomedical and industrial application. Doxorubicin is an effective anti-cancer drug in the treatment of many types of cancers. The aim of this study is to load doxorubicin on stimuli-responsive nanocarriers. These nanocarriers are prepared from magnetic nanoparticles. Then these magnetic nanparticles are coated by copolymer of poly(glycidyl methacrylate) then reacted with hydrazine and hydrazide functional group is formed that can chemically be bonded with the anticancer drug doxorubicin via a hydrazone bond formation. This... 

    Synthesis and Characterization of Transition Metal Complexes Supported on Carbon-Based Nanocomposites and Their Application as Gene and Drug Delivery Systems

    , Ph.D. Dissertation Sharif University of Technology Safarkhani, Moein (Author) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    In this dissertation, an attempt has been made to optimize some smart nanocarriers and the controllable release of drug (doxorubicin) and genetic material (plasmid CRISPR). Regarding, some metal nanoparticles, metal-organic frameworks, transition metal complexes, graphene oxide, and functionalized carbon nanotubes have been synthesized and also characterized and their hybrids and nanocomposites have been prepared successfully. All the abovementioned nanomaterials were designed and synthesized due to achieve biodegradable, biocompatible, higher positive surface potential, lower cytotoxicity, better responsivity to stimulus, and greener compounds. Doxorubicin and plasmid CRISPR has been... 

    Loading of Drug and Nanostructured Coating on Dental Implant

    , M.Sc. Thesis Sharif University of Technology Abbaspour Ghomi, Somayya (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor)
    Abstract
    The aim of this project is to load analgesic drug; Paracetamol on dental implant. The implant is titanium alloy (Ti-6Al-4V). There are two kinds of samples of anodized and HA coated onto anodized. They are in the shape of the sheets in this study. The electrodeposition and anodization carried out in order to treat the two samples. Nanotubes were formed during anodic oxidation of the samples in the 1M Ammonium sulfate (NH₄)₂SO4 and 5wt% Ammonium fluoride NH4F electrolyte. They are expected to play role of carrier for the model drug; paracetamol. The results showed that HA anodized Ti-6-4 has the ability to hold higher amounts of drug and also can keep the drug for a longer time than the... 

    PH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents

    , Article Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology ; Volume 8, Issue 5 , 2016 , Pages 696-716 ; 19395116 (ISSN) Karimi, M ; Eslami, M ; Sahandi Zangabad, P ; Mirab, F ; Farajisafiloo, N ; Shafaei, Z ; Ghosh, D ; Bozorgomid, M ; Dashkhaneh, F ; Hamblin, M. R ; Sharif University of Technology
    Wiley-Blackwell  2016
    Abstract
    In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems... 

    Smart mesoporous silica nanoparticles for controlled-release drug delivery

    , Article Nanotechnology Reviews ; Volume 5, Issue 2 , 2016 , Pages 195-207 ; 21919089 (ISSN) Karimi, M ; Mirshekari, H ; Aliakbari, M ; Sahandi Zangabad, P ; Hamblin, M. R ; Sharif University of Technology
    Walter de Gruyter GmbH  2016
    Abstract
    Stimuli-responsive controlled-release nanocarriers are promising vehicles for delivery of bioactive molecules that can minimize side effects and maximize efficiency. The release of the drug occurs when the nanocarrier is triggered by an internal or external stimulus. Mesoporous silica nanoparticles (MSN) can have drugs and bioactive cargos loaded into the high-capacity pores, and their release can be triggered by activation of a variety of stimulus-responsive molecular "gatekeepers" or "nanovalves." In this mini-review, we discuss the basic concepts of MSN in targeted drug-release systems and cover different stimulus-responsive gatekeepers. Internal stimuli include redox, enzymes, and pH,... 

    Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications

    , Article Nanotechnology Reviews ; Volume 7, Issue 1 , 2018 , Pages 95-122 ; 21919089 (ISSN) Sahandi Zangabad, P ; Mirkiani, S ; Shahsavari, S ; Masoudi, B ; Masroor, M ; Hamed, H ; Jafari, Z ; Davatgaran Taghipour, Y ; Hashemi, H ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Walter de Gruyter GmbH  2018
    Abstract
    Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among the different types of self-assembled NPs, liposomes stand out for their non-toxic nature and their possession of dual hydrophilic-hydrophobic domains. The advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. First, ligands for... 

    Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition

    , Article International Journal of Hyperthermia ; 2018 ; 02656736 (ISSN) Dabbagh, A ; Hedayatnasab, Z ; Karimian, H ; Sarraf, M ; Yeong, C. H ; Madaah Hosseini, H. R ; Abu Kasim, N. H ; Wong, T. W ; Rahman, N. A ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Purpose: Although magnetite nanoparticles (MNPs) are promising agents for hyperthermia therapy, insufficient drug encapsulation efficacies inhibit their application as nanocarriers in the targeted drug delivery systems. In this study, porous magnetite nanoparticles (PMNPs) were synthesized and coated with a thermosensitive polymeric shell to obtain a synergistic effect of hyperthermia and chemotherapy. Materials and methods: PMNPs were produced using cetyltrimethyl ammonium bromide template and then coated by a polyethylene glycol layer with molecular weight of 1500 Da (PEG1500) and phase transition temperature of 48 ± 2 °C to endow a thermosensitive behavior. The profile of drug release... 

    Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems

    , Article Critical Reviews in Biotechnology ; Volume 38, Issue 1 , 2018 , Pages 47-67 ; 07388551 (ISSN) Malekzad, H ; Mirshekari, H ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Baniasadi, F ; Sharifi Aghdam, M ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble... 

    PEG-co-polyvinyl pyridine coated magnetic mesoporous silica nanoparticles for pH-responsive controlled release of doxorubicin

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 64, Issue 11 , 2015 , Pages 570-577 ; 00914037 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Bennett, C ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    In the present work a pH responsive drug nanocarrier based on magnetic mesoporous silica nanoparticles (MMSN) and polyethylene glycol-co-polyvinyl pyridine (PEG-co-PVP) was prepared. The core-shell nanocarrier was formed due to electrostatic interaction between protonated polyvinyl pyridine and surface modified MMSN with carboxylate groups. This carrier was used for pH-controllable doxorubicin release. The maximum release was occurred at pH 5.5 (pH of endosomes). This carrier was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, UV-Vis spectrophotometer, scanning electron microscope, and high-resolution transmission electron microscope techniques. Also the... 

    Margination and adhesion of micro- and nanoparticles in the coronary circulation: A step towards optimised drug carrier design

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 17, Issue 1 , 2018 , Pages 205-221 ; 16177959 (ISSN) Forouzandehmehr, M ; Shamloo, A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Obstruction of left anterior descending artery (LAD) due to the thrombosis or atherosclerotic plaques is the leading cause of death worldwide. Targeted delivery of drugs through micro- and nanoparticles is a very promising approach for developing new strategies in clot-busting or treating restenosis. In this work, we modelled the blood flow characteristics in a patient-specific reconstructed LAD artery by the fluid–solid interaction method and based on physiological boundary conditions. Next, we provided a Lagrangian description of micro- and nanoparticles dynamics in the blood flow considering their Brownian motion and the particle–particle interactions. Our results state that the number of... 

    Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment

    , Article Biophysical Reviews ; Volume 11, Issue 3 , 2019 , Pages 335-352 ; 18672450 (ISSN) Khafaji, M ; Zamani, M ; Golizadeh, M ; Bavi, O ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard,... 

    Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of gemcitabine

    , Article Pharmaceutical Research ; Volume 33, Issue 2 , 2016 , Pages 417-432 ; 07248741 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Abedin Moghanaki, A ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    Purpose: The prime end of this study was to design a novel pH-sensitive as well as a PEGylated dendritic nanocarrier for both controllable and traceable gemcitabine delivery to cancerous cells. To accomplish this goal, we took advantage of a hybrid of nanoparticles including: mesoporous silica, graphene oxide and magnetite. Methods: The nanocarrier was prepared in a multi-step synthesis route. First, magnetite mesoporous silica was deposited on the graphene oxide matrix. Then, polyamidoamine dendrimers (up to generation 1.5) with pentaethylene hexamine end groups were grafted on the surface of the nanoparticles. In order to enhance the biostability, and as the next step, the nanocarrier was... 

    Dendritic magnetite decorated by pH-responsive PEGylated starch: A smart multifunctional nanocarrier for the triggered release of anti-cancer drugs

    , Article RSC Advances ; Volume 5, Issue 60 , Jun , 2015 , Pages 48586-48595 ; 20462069 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Hosseini, S. H ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    In the present study, we designed a pH-responsive drug nanocarrier based on polyamidoamine-modified Fe3O4 nanoparticles coated by PEGylated starch-co-poly(acrylic acid). This carrier was used for the controlled release of doxorubicin as an anticancer drug model. The purpose of using the polyethylene glycol moiety is to generate a biostable nanocarrier in blood stream as it has been reported widely in the pharmaceutical literature. The use of a poly(acrylic acid) segment also provided pH-sensitivity to the polymer. Besides, the magnetic nanoparticles facilitate the cancer cell targeting with an external magnetic field located near the tumor site. This carrier was... 

    Poly(glycidyl methacrylate)-coated magnetic graphene oxide as a highly efficient nanocarrier: Preparation, characterization, and targeted DOX delivery

    , Article New Journal of Chemistry ; Volume 43, Issue 47 , 2019 , Pages 18647-18656 ; 11440546 (ISSN) Pourjavadi, A ; Kohestanian, M ; Yaghoubi, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    Herein, we report the preparation of novel magnetic graphene oxide (GO) grafted with brush polymer via surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization and its application as a nanocarrier for magnetic- and pH-triggered delivery of doxorubicin anticancer drug. The RAFT agent, DDMAT, was firstly attached to the surface of magnetic GO nanosheets. The DDMAT-functionalized magnetic GO nanosheets were then used to polymerize glycidyl methacrylate (GMA) using an SI-RAFT method. Afterwards, the epoxy rings of the PGMA chains were opened with hydrazine (N2H4) moieties. The resulting nanocomposite was used as a drug carrier for doxorubicin (DOX) as an... 

    Poly(glycidyl methacrylate)-coated magnetic graphene oxide as a highly efficient nanocarrier: Preparation, characterization, and targeted DOX delivery

    , Article New Journal of Chemistry ; Volume 43, Issue 47 , 2019 , Pages 18647-18656 ; 11440546 (ISSN) Pourjavadi, A ; Kohestanian, M ; Yaghoubi, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    Herein, we report the preparation of novel magnetic graphene oxide (GO) grafted with brush polymer via surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization and its application as a nanocarrier for magnetic- and pH-triggered delivery of doxorubicin anticancer drug. The RAFT agent, DDMAT, was firstly attached to the surface of magnetic GO nanosheets. The DDMAT-functionalized magnetic GO nanosheets were then used to polymerize glycidyl methacrylate (GMA) using an SI-RAFT method. Afterwards, the epoxy rings of the PGMA chains were opened with hydrazine (N2H4) moieties. The resulting nanocomposite was used as a drug carrier for doxorubicin (DOX) as an...