Loading...
Search for: nanocomposites
0.01 seconds
Total 1030 records

    Impedance analysis of growth and morphology of electropolymerized polypyrrole nanocomposites [electronic resource]

    , Article Journal of New Materials for Electrochemical Systems ; 2014, Volume 17, Number 2 Torabi, M. (Morteza) ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    Pure polypyrrole (PPy), PPy/Al2O3 and PPy/SiO2 nanocomposites synthesized galvanostatically using different polymerization charges. Electrochemical impedance measurements of pure polypyrrole revealed that the film thickness affected the impedance responses. The characteristic frequencies vs. film thickness that obtained using Cole-Cole plots showed that electrodeposition mechanism changed from 3D to 1D after nuclei overlapping for pure PPy. Analysis of the nanocomposites impedance spectrums revealed no changes during the film growth, i.e. deposition continues 3D even after nuclei overlapping. Scanning electron microscopy (SEM) confirmed the impedance results and showed that the morphology of... 

    Electroplating and characterization of Cr–Al2O3 nanocomposite film from a trivalent chromium bath [electronic resource]

    , Article Anti-Corrosion Methods and Materials ; Vol 61, No 4, 2014, 205-214 Salehi Doolabi, M. (Mohsen) ; Sadrnezhaad, Khatiboleslam ; Salehi Doolabi, Davood ; Sharif University of Technology
    Abstract
    The main aim of this study was to improve current efficiency and to obtain thicker coatings via aluminum oxide (Al2O3) addition to the chromium (Cr) (III) bath. Design/methodology/approach ‐ Pure Cr and nanocomposite Cr–Al2O3 coatings were electrodeposited from Cr (III) bath onto cathode copper substrates by conventional method. Dependence of current efficiency to current density, Al2O3 content and particle size were investigated. Findings ‐ Current efficiency increased with Al2O3 amount and decreased with Al2O3 particle size. Maximum current efficiency was achieved at 25 A/dm2 for pure Cr and 30 A/dm2 for composite coatings. Al2O3 bath content, current density and stirring rate increased... 

    Effects of post-annealing on the microstructure and mechanical properties of friction stir processed Al–Mg–TiO2 nanocomposites [electronic resource]

    , Article Journal of Materials & Design ; November 2014, Volume 63, Pages 30–41 Khodabakhshi, F ; Simchi, A. (Abdolreza) ; Kokabi, A. H ; Gerlich, A. P ; Nosko, M ; Sharif University of Technology
    Abstract
    Aluminum matrix nanocomposites were fabricated via friction stir processing of an Al–Mg alloy with pre-inserted TiO2 nanoparticles at different volume fractions of 3%, 5% and 6%. The nanocomposites were annealed at 300–500 °C for 1–5 h in air to study the effect of annealing on the microstructural changes and mechanical properties. Microstructural studies by scanning and transmission electron microscopy showed that new phases were formed during friction stir processing due to chemical reactions at the interface of TiO2 with the aluminum matrix alloy. Reactive annealing completed the solid-state reactions, which led to a significant improvement in the ductility of the nanocomposites (more... 

    Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles [electronic resource]

    , Article Materials Science and Engineering: A ; 27 May 2014, Volume 605, Pages 108–118 Khodabakhshi, F ; Simchi, A. (Abdolreza) ; Kokabi, A. H ; Nosko, M ; Simancik, F ; Svec, P ; Sharif University of Technology
    Abstract
    Aluminum matrix nanocomposites were fabricated by friction stir processing of Al–Mg alloy sheets with pre-placed TiO2 nanoparticles at a concentration of 2 to 6 vol%. Microstructural studies showed that solid state reactions between the metal matrix and TiO2 particles caused in situ formation of MgO and Al3Ti nanophases with an average size ~50 nm. These nanophases were homogenously distributed in an ultra-fine grain structure (0.2–2 µm) of the base metal. The results of pole figures evaluation obtained by electron back scattered diffraction studies revealed that the random orientation of initial annealed sheet was changed to components near to shear and silver texture in the friction stir... 

    Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation [electronic resource]

    , Article Journal of Applied Surface Science ; 15 May 2014, Volume 301, Pages 456–462 Mazaheri, M ; Akhavan, O ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    Graphene oxide (GO)–chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ∼1 μm and thickness of ∼1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ∼80% and 45%, respectively. Similar to the chitosan layer, the GO–chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured... 

    Reactive friction stir processing of AA 5052-TiO2 nanocomposite: process-microstructure-mechanical characteristics [electronic resource]

    , Article Journal of Materials Science and Technology ; 2014, Vol.0, Issue 0 Khodabakhshi, F ; Simchi, A. (Abdolreza) ; Kokabi, A. H ; Sadeghahmadi, M ; Gerlich, A. P ; Sharif University of Technology
    Abstract
    Friction stir processing (FSP) is a solid state route with a capacity of preparing fine grained nanocomposites from metal sheets. In this work, we employed this process to finely distribute TiO2 nanoparticles throughout an Al–Mg alloy, aiming to enhance mechanical properties. Titanium dioxide particles (30 nm) were preplaced into grooves machined in the middle of the aluminium alloy sheet and multipass FSP was afforded. This process refined the grain structure of the aluminium alloy, distributed the hard nanoparticles in the matrix and promoted solid state chemical reactions at the interfaces of the metal/ceramic particles. Detailed optical and electron microscopic studies showed that the... 

    Microstructure and compressibility of SiC nanoparticles reinforced Cu nanocomposite powders processed by high energy mechanical milling [electronic resource]

    , Article Ceramics International ; Volume 40, Issue 1, Part A, January 2014, Pages 951–960 Akbarpour, M.R. (Mohammad Reza) ; Salahi, E ; Alikhani Hesari, F ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    Cu/SiC nanocomposite powders with homogeneously distributed nanosize SiC particles were produced by high energy mechanical milling (MM). Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and micro-hardness and density measurements were performed to understand the effects of microstructure and hardness on compaction behavior during MM. The effects of SiC nanoparticle content and mechanical milling time on apparent density (AD) and tap density (TD) of the nanocomposite powders were systematically investigated. The Hausner ratio (HR), defined as TD to AD, were estimated to evaluate friction between the particles. Increasing MM duration and SiC content resulted... 

    Effect of nanoparticle content on the microstructural and mechanical properties of nano-SiC dispersed bulk ultrafine-grained Cu matrix composites [electronic resource]

    , Article Journal of Materials & Design ; December 2013, Volume 52, Pages 881–887 Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Kim, H. S ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    In this study, the microstructural and mechanical features of monolithic pure Cu and Cu matrix nanocomposites reinforced with three different fractions (2, 4, and 6 vol%) of SiC nanoparticles (n-SiC) fabricated via a combination of high energy mechanical milling and hot pressing techniques were investigated. The fabricated composites exhibited homogeneous distribution of the n-SiC with few porosities. It was found that the grain refinement, the planar features within the grains, and the lattice strains increase with increase in the n-SiC content. The yield and compressive strengths of the nanocomposites were significantly improved with increases in the n-SiC content up to 4 vol%; then they... 

    Nanodiamonds for surface engineering of orthopedic implants: Enhanced biocompatibility in human osteosarcoma cell culture [electronic resource]

    , Article Diamond and Related Materials ; Volume 40, 2013, Pages 107-114 Mansoorianfar, M. (Mojtaba) ; Shokrgozar, M. A ; Mehrjoo, M ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    Abstract
    Recently, nanodiamonds have attracted interest in biomedical applications such as drug delivery, targeted cancer therapies, fabrication of tissue scaffolds, and biosensors. We incorporated diamond nanoparticles in alginate–bioactive glass films by electrophoretic process to prepare functional coatings for biomedical implants. Turbidity examination by time-resolved laser transmittance measurement revealed that a stable multi-component aqueous suspension of alginate, bioactive glass and diamond particles could be obtained at concentrations of 0.6, 1.3, and 0.65 g/l, respectively. Uniform films with ~ 5 μm thickness were deposited on 316 stainless steel foils by employing constant field... 

    Friction stir welding of a P/M Al–Al2O3 nanocomposite: Microstructure and mechanical properties

    , Article Materials Science and Engineering: A (Elsevier) ; 2014, 585, 222-232 Khodabakhshi, F ; Sharif University Of Technology
    Abstract
    Solid-state joining of powder-metallurgy processed (P/M) Al–2 vol% Al2O3 (15 nm) nanocomposite by friction stir welding (FSW) was studied. The nanocomposite was prepared via high-energy mechanical milling followed by hot consolidation processes. The microstructure, mechanical properties and fracture behavior of the welds were evaluated and compared with FSWed wrought 1050 aluminum sheets (WAS). We have found that unlike WAS that can processed at various FSW conditions, the working window for the solid-state joining of P/M nanocomposite is narrow and only feasible at relatively high heating inputs. Microstructural studies showed the formation of melted zones with high hardness at the... 

    Tissue growth into three‐dimensional composite scaffolds with controlled micro‐features and nanotopographical surfaces [electronic resource]

    , Article Journal of Biomedical Materials Research Part A ; October 2013, Vol. 101, Issue 10, Pages 2796-2807 Tamjid, E. (Elnaz) ; Simchi, A. (Abdolreza) ; Dunlop, John W. C ; Fratzl, Peter ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
    Abstract
    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were... 

    Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles [electronic resource]

    , Article Journal of Materials Science and Engineering: A (Elsevier) ; 15 April 2013, Volume 568, Pages 33–39 Akbarpour, M. R ; Salahi, E ; Hesari, F. A ; Yoon, E.Y ; Kim, H.S ; Simchi, A. (Abdolreza) ; Sharif University of Technnology
    Abstract
    Nanostructured Cu and Cu-2 vol% SiC nanocomposite were produced by high energy mechanical milling and hot pressing technique. Microstructure development during fabrication process was investigated by X-ray diffraction, scanning electron microscope, scanning transmission electron microscope, and electron backscatter diffraction techniques. The results showed that the microstructure of copper and copper-based nanocomposite composed of a mixture of equiaxed nanograins with bimodal and non-random misorientation distribution. The presence of SiC nanoparticles refined the grain structure of the copper matrix while the fraction of low angle grain boundaries was increased. Evaluation of mechanical... 

    Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy [electronic resource]

    , Article Journal of Materials Characterization ; January 2013, Volume 75, Pages 108–114 Asgharzadeh, H ; Kim, H. S ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    An ultrafine-grained Al6063/Al2O3 (0.8 vol.%, 25 nm) nanocomposite was prepared via powder metallurgy route through reactive mechanical alloying and hot powder extrusion. Scanning electron microcopy, transmission electron microscopy, and back scattered electron diffraction analysis showed that the grain structure of the nanocomposite is trimodal and composed of nano-size grains (< 0.1 μm), ultrafine grains (0.1–1 μm), and micron-size grains (> 1 μm) with random orientations. Evaluation of the mechanical properties of the nanocomposite based on the strengthening-mechanism models revealed that the yield strength of the ultrafine-grained nanocomposite is mainly controlled by the high-angle... 

    Microstructure features, strengthening mechanisms and hot deformation behavior of oxide-dispersion Strengthened Al6063 alloy with ultrafine-grained structure [electronic resource]

    , Article AIP Conference Proceedings (American Institute of Physics, Ste. 1 NO. 1 Melville NY 11747-4502 United States) ; Volume 75, January 2013, Pages 108–114 Asgharzadeh, H ; Kim, H. S ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    Ultrafine-grained (UFG) Al6063/Al2O3 (0.8 vol%, 25 nm) nanocomposite was prepared via powdr metallurgy route. The grain structure of the nanocomposite composed of nano-size grains (< 0.1 μm), ultrafine grains (0.1-1 μm) and micron-size grains (>1 μm) with random orientations. It was found that the yield strength of the UFG nanocomposite is mainly controlled by the Orowan mechanism rather than the grain boundaries. The deformation activation energy at temperature ranges of T <300 ˚C and 300 ˚C ≤T < 450 ˚C was determined to be 74 and 264 kJ mol-1, respectively. At the higher temperatures, significant deformation softening was observed due to dynamic recrystallization of non-equilibrium grain... 

    Nano sized ZnO composites: Preparation, characterization and application as photocatalysts for degradation of AB92 azo dye

    , Article Materials Science in Semiconductor Processing ; Volume 21 , May , 2014 , Pages 167–179 Mohaghegha, N. (Neda) ; Tasviri, M. (Mahboubeh) ; Rahimic, E. (Esmail) ; Gholamia, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    ZnO and Mordenite zeolite (MOR) nanoparticles were prepared by precipitation process using ultrasonic irradiation and hydrothermal method, respectively. Supported ZnO catalysts were prepared and the effect of different supports on the photocatalytic activity of ZnO nanoparticles was investigated. All prepared samples were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform-Infra Red Spectroscopy (FTIR), UV–vis spectroscopy (UV–vis) and BET surface area technique. The photocatalytic activity of the synthesized catalysts was elucidated using the photo-oxidation of Acid Blue 92 (AB92) as a hazardous pollutant under UV light. The effect of different... 

    Highly efficient hydroxyapatite/TiO2 composites covered by silver halides as E. coli disinfectant under visible light and dark media

    , Article Photochemical and Photobiological Sciences ; Volume 12, Issue 10 , October , 2013 , Pages 1787-1794 Azimzadehirani, M ; Elahifard, M ; Haghighi, S ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    TiO2-based photocatalysts are seen as the most common agents for the photodegradation of bacteria. In this study, AgCl/TiO2, hydroxyapatite(Hp)/AgCl/TiO2, AgI/TiO2, and Hp/AgI/TiO2 were prepared by the deposition-precipitation method on P25 TiO2 nanoparticles and were characterized by XRD, SEM, FT-IR, EDX and BET methods. The prepared composites showed high efficiency for the inactivation of Escherichia coli (E. coli) bacteria under visible light and in dark media with different catalyst amounts of 12 and 24 mg, respectively. In less than 30 min, AgI/TiO2, prepared by the combination of cationic surfactant and PVPI2, disinfected 1 × 10(7) colony-forming units of E. coli completely. However,... 

    Synthesis and characterization of TiO2-graphene nanocomposites modified with noble metals as a photocatalyst for degradation of pollutants

    , Article Applied Catalysis A: General ; Vol. 462–463 , July , 2013 , Pages 82–90 Ghasemia, S. (Shahnaz) ; Esfandiarb, A. (Ali) ; Rahman Setayesha, S. (Shahrbano) ; Habibi-Yangjehc, A. (Aziz) ; Iraji zadb, A. (Azam) ; Gholamia, M .R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    TiO2–graphene (TiO2–GR) nanocomposites were synthesized using photocatalytic reduction method. TiO2–GR nanocomposites were thereafter doped with noble metals (Pt and Pd) by chemical reduction of the corresponding cations. The samples were characterized by different techniques. The addition of GR to TiO2 decreases the crystalline size of TiO2 due to the homogeneous dispersion of the TiO2 nanoparticles on GR sheets and prevention of coagulation of TiO2 nanoparticles during synthesis process. In addition, the surface area of TiO2 was increased by addition of GR and deposition of noble metals which helps to prevent agglomeration of graphene sheets and TiO2 nanoparticles. Red shifts to the higher... 

    Cryogenic friction-stir processing of ultrafine-grained Al-Mg-TiO2 nanocomposites

    , Article Materials Science and Engineering A ; Vol. 620, issue , 2014 , pp. 471-482 ; ISSN: 09215093 Khodabakhshi, F ; Gerlich, A. P ; Simchi, A ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    Submerged friction-stir processing under cryogenic conditions was employed to fabricate ultrafine-grained nanocomposites with enhanced mechanical characteristics. Al-Mg alloy sheet with 3vol% TiO2 nanoparticles were processed under air (ambient temperature), a water-dry ice medium (~-25°C), and liquid nitrogen. It is shown that a homogenous distribution of reinforcement particles throughout the metal matrix is attained at a rotational speed of 1400rpm and a traverse velocity of 50mm/min after 4 passes. In situ formation of Al3Ti and MgO nanophases during multi-pass processing is shown by transmission electron microscopy. Under the cryogenic cooling condition, ultrafine grains and cellular... 

    Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol

    , Article Materials Science and Engineering C ; Vol. 42 , 2014 , pp. 341-349 ; ISSN: 09284931 Ganji, Y ; Kasra,M ; Salahshour Kordestani, S ; Bagheri Hariri, M ; Sharif University of Technology
    Abstract
    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell... 

    An electrospun magnetic nanocomposite for a facile micro-scaled analysis approach

    , Article Analytical Methods ; Vol. 6, issue. 15 , 2014 , Pages 5838-5846 ; ISSN: 17599660 Bagheri, H ; Roostaie, A ; Daliri, R ; Sharif University of Technology
    Abstract
    A magnetic polyurethane (PU) nanocomposite was synthesized by an electrospinning technique and applied for isolation and preconcentration of fluoxetine from aquatic and biological samples. The nanocomposite was electrospun using a PU polymer solution containing the dispersed magnetic nanoparticles. The magnetic properties of iron nanoparticles, along with the use of an electrospinning technique, led to the formation of a suitable sorbent toward isolation of fluoxetine. The magnetic PU nanofibers could be subsequently removed from the sample solution by applying a permanent magnet. The scanning electron microscopy (SEM) image of the magnetic PU nanofibers confirms that their diameters are in...