Loading...
Search for: nanocrystallines
0.014 seconds
Total 107 records

    Electroplating Nano Crystalline Nickel for Reduction of Corrosion Rate

    , M.Sc. Thesis Sharif University of Technology Hajinejad, Davood (Author) ; Baghalha, Morteza (Supervisor)
    Abstract
    Polycrystalline materials are solids that are composed of many crystallites of varying size and orientation called “Grain”. As the grain size reduces to the values below 100nm, the overall material properties are remarkably changed, and thus the resulting nanocrystalline materials have provided much better engineering properties at the same chemical composition compared to the microcrystalline. The main objective of the present study is to synthesize a nanocrystalline (22nm-25nm) coating based on Nickel over the yellow-brass plates. To do this, an electroplating technique in a modified Watts bath is employed in which the current density and stirring speed varied between 3 to 9.5 Ampere per... 

    Molecular Dynamics Simulation of Crack Propagation in Nanocrystalline Materials

    , M.Sc. Thesis Sharif University of Technology Moradi, Masoud (Author) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    Nanocrystalline metals and alloys have some appealing characteristics with significance potential compared to their microcrystalline counterparts for engineering applications. These include ultra-high yield and fracture strengths, decreased elongation and toughness, superior wear resistance, and the promise of enhanced superplastic formability at lower temperatures and faster strain rates. This leads us to study the effects of different nanocrystalline parameters on crack propagation process in these materials. In the present study, the behavior of a crack in a columnar nanocrystalline structure is examined. One of the methods of modelling nanocrystals primary structures is the Voronoi... 

    Study of the Effect of Electroplated Nanocrystalline Nickel Grain Size on Corrosion Resistance

    , M.Sc. Thesis Sharif University of Technology Ghorbanpour, Arian (Author) ; Baghalha, Morteza (Supervisor) ; Kazemeini, Mohammad (Supervisor)
    Abstract
    In this project, nonocrystalline nickel coatings with grain sizes within the range of 9-27 nanometers were produced on yellow-brass plates by electroplating in a modified Watts bath applying current densities from 2 to 6 A/dm2 and bath stirring speeds from 0 to 400 rpm. To determine crystallite size, X-ray diffraction technique (XRD) was utilized; it was observed that grain size declined continuously with increase in current density and then in bath stirring speed. The experimental results coming from XRD tests were compared with a theoretical model in order to verify their reliability; the obtained curve indicated a good correspondence between the experimental data and the theoretical... 

    Investigation the Correlation Between Nanocrystallization and Consolidation Mechanisms and Their Effect on Magnetic Properties of Bulk Finemet Type Alloys

    , Ph.D. Dissertation Sharif University of Technology Gheiratmand, Tayebeh (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Davami, Parviz (Supervisor)
    Abstract
    Finemet soft magnetic alloys in the form of toroidally winded ribbons are not suitable for industrial applications where a large volume of magnetic materials is required. Production of Finemet bulk alloy by powder metallurgy techniques is an applicable method to produce complex component with isotropic magnetic properties which are the same as ribbons. In this research, Finemet bulk magnetic alloy with composition of has been produced by consolidation of amorphous powders obtained by milling of melt-spun ribbons. At the all stages, the structure and magnetic properties were studied using X-ray diffraction, differential scanning calorimetry, transmission electron microscopy, scanning... 

    Synthesis and Evaluation of a Nano-Catalyst for Dehydration of Methanol to Dimethyl Ether

    , M.Sc. Thesis Sharif University of Technology Zaherian, Amir Ali (Author) ; Kazemeini, Mohammad (Supervisor) ; Aghaziarati, Mahmoud (Supervisor)
    Abstract
    Dimethyl ether (DME) as a clean fuel is a suitable alternative for diesel fuel. It has a high cetane number and does not contain any sulfur or metal compounds. Furthermore, DME does not form any soot and has a potential to reduce NOx emissions. In addition, it is not corrosive to any metal and not harmful to the human body. Two approaches are currently used for the production of DME from synthesis gas. The first is an indirect two-step process involving methanol synthesis followed by catalytic dehydration of methanol to DME over solid-acid catalysts, while the second method enables direct synthesis of DME using a bifunctional catalyst. At present, indirect synthesis of DME is a more... 

    Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid

    , Article Journal of Hazardous Materials ; Volume 172, Issues 2–3 , December , 2009 , Pages 1573–1578 Ghasemi, S. (Shahnaz) ; Rahimnejad, S. (sara) ; Rahman Setayesh, S. (shahrbanoo) ; Rohani, S ; Gholami, M.R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    TiO2 and transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO2 nanoparticles were synthesized by the sol–gel method using 2-hydroxylethylammonium formate as an ionic liquid. All the prepared samples were calcined at 500 °C and characterized by X-ray diffraction (XRD), BET surface area determination, energy dispersive X-ray (EDX) analysis, diffuse reflectance spectroscopy (DRS), and Fourier transformed infrared (FT-IR) techniques. The studies revealed that transition metal (TM) doped nanoparticles have smaller crystalline size and higher surface area than pure TiO2. Dopant ions in the TiO2 structure caused significant absorption shift into the visible region. The results of... 

    Kinetics Investigation of the Photocatalytic Degradation of Acid Blue 92 in Aqueous Solution Using Nanocrystalline TiO2 Prepared in an Ionic Liquid

    , Article Progress in Reaction Kinetics and Mechanism ; vol, 34 , March , 2009 , PP. 55–76 Ghasemi, S. (Shahnaz) ; Rahimnejad, S. (Sara) ; Rahman Setayesh, S. (Shahrbanoo) ; Hosseini, M. (Mohammad) ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    TiO2 nanoparticles were prepared by the sol - gel process using 2-hydroxylethy- lammonium formate as an ionic liquid. Nanoparticles were crystallized at various temperatures (300-700°C). The products were characterized using X-ray diffraction (XRD), nitrogen adsorption - desorption isotherms and scanning electron microscopy (SEM) techniques. It was found that the resulting TiO2 nanoparticles had good thermal stability either to resist collapse or the anatase-to-rutile phase transformation during heat treatment. The photocatalytic activity of the nanocrystalline TiO2 was evaluated by the degradation of Acid Blue 92 (AB92) which is\ commonly used as a textile dye. The results showed that the... 

    A credible role of copper oxide on structure of nanocrystalline mesoporous titanium dioxide

    , Article Journal of the Iranian Chemical Society ; Volume 5, Issue 3 , September , 2008 , pp. 367-374 ; 1735207X Rahimnejad, S. (Sara) ; Rahman Setayesh, S. (Shahrbanoo) ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    Copper oxide-titania catalysts with nanocrystalline mesoporous structure were prepared by sol-gel technique using tetra isopropyl ortho titanate (TiPT) as the inorganic precursor and amino-2 ethanol as the swelling agent. Characterization was performed using X-ray diffraction (XRD), fourier transformed infrared spectra (FTIR), scanning electron microscopy (SEM), diffuse reflectance UV-Vis spectroscopy (DRS), and N2 adsorption-desorption measurements. It was found that CuO (0.025-0.1 mol ratio) has some effect on the particle size, surface area, pore-volume, pore-diameter, crystallinity of the particles, and crystalline phase of TiO2 nanocrystalline. The results indicated that 0.1 CuO-TiO2... 

    Sensor performance of nanostructured TiO2-Cr2O3 thin films derived by a particulate Sol-Gel route with various Cr:Ti molar ratios

    , Article Journal of Electronic Materials ; Vol. 43, issue. 11 , Jul , 2014 , p. 3922-3932 Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    Abstract
    Nanocrystalline and nanostructured TiO2-Cr2O3 thin films and powders were prepared by a facile and straightforward aqueous particulate sol-gel route at low temperature of 400°C. The prepared sols showed a narrow particle size distribution with hydrodynamic diameter in the range of 17.7 nm to 19.0 nm. Moreover, the sols were stable over 4 months, with constant zeta potential measured during this period. The effect of the Cr:Ti molar ratio on the crystallization behavior of the products was studied. X-ray diffraction (XRD) analysis revealed that the powders crystallized at low temperature of 400°C, containing anatase-TiO2, rutile-TiO2, and Cr2O3 phases, depending on the annealing temperature... 

    Nanothickness films, nanostructured films, and nanocrystals of barium titanate obtained directly by a newly developed sol–gel synthesis pathway

    , Article Journal of Materials Science: Materials in Electronics ; Vol. 25, issue. 12 , 2014 , p. 5345-5355 Ashiri, R ; Nemati, A ; Sasani Ghamsari, M ; Dastgahi, M. M ; Sharif University of Technology
    Abstract
    This work aims to develop a chemically modified sol–gel synthesis pathway for obtaining various barium titanate nanostructures. The method is able to prepare different BaTiO3 nanostructures such as highly stable nanoparticle embedded colloids, highly transparent amorphous nanolayers, nanocrystalline BaTiO3 powders and ultrathin BaTiO3 nanostructured films directly from a precursor solution. All the products have been prepared at a lower temperature and in a more cost-effective way in contrast to other established sol–gel methods. The results show that the optical transparency of the thin films has been significantly improved in contrast to the similar researches. The deposited thin film is... 

    Synthesis of highly pure nanocrystalline and mesoporous CaTiO3 by a particulate sol-gel route at the low temperature

    , Article Journal of Sol-Gel Science and Technology ; Volume 68, Issue 2 , 2013 , Pages 324-333 ; 09280707 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2013
    Abstract
    The low temperature perovskite-type calcium titanate (CaTiO3) thin films and powders with nanocrystalline and mesoporous structure were prepared by a straightforward particulate sol-gel route. The prepared sol had a narrow particle size distribution about 17 nm. X-ray diffraction and Fourier transform infrared spectroscopy revealed that, the synthesized powders had highly pure and crystallized CaTiO3 structure with preferable orientation growth along (1 2 1) direction at 400-800 °C. The activation energy of crystal growth was calculated 5.73 kJ/mol. Furthermore, transmission electron microscope images showed that the average crystallite size of the powders annealed at 400 °C was around 3.5... 

    Electropolishing effect on corrosion resistance of electrodeposited nanocrystalline Ni-Mo alloy coatings in NaCl solution

    , Article ECS Transactions ; Volume 45, Issue 19 , 2013 , Pages 65-76 ; 19385862 (ISSN) ; 9781623320355 (ISBN) Roozbehani, B ; Allahyarzadeh, M. H ; Ashrafi, A ; Shadizadeh, S. R ; Seddighian, A ; Sharif University of Technology
    2013
    Abstract
    The aim of current research is to investigate the substrate electropolishing effect on corrosion resistance of Ni-Mo thin films. For this purpose, corrosion resistance of coatings deposited on mild steel substrates, that was electropolished or mechanically polished, have been compared in 3.5 wt.% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The structural properties of Ni-Mo thin films were evaluated using X-ray diffraction (XRD) and their morphology, microstructure and chemical composition were also investigated using scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). Temperature and acidity of deposition... 

    Synthesis of highly porous nanocrystalline alumina as a robust catalyst for dehydration of methanol to dimethyl ether

    , Article Journal of Porous Materials ; Volume 20, Issue 1 , 2013 , Pages 151-157 ; 13802224 (ISSN) Zaherian, A ; Kazemeini, M ; Aghaziarati, M ; Alamolhoda, S ; Sharif University of Technology
    2013
    Abstract
    Highly porous nanocrystalline alumina was synthesized using two different precipitation processes and precipitating agents, which were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and porosimetry analyses. Different precipitating agents yielded nanocrystalline alumina catalysts with different morphologies and textural properties. Batch precipitation using sodium bicarbonate at constant pH resulted in a highly porous nanocrystalline γ-alumina catalyst, having surface area of 351.47 m2 g-1, total pore volume of 1.68 cm3 g -1 and mean pore diameter of 19.17 nm. The mean crystallite size was also determined to be 3.8 nm, based on the XRD results. Catalytic... 

    Synthesis of nanocrystalline Ni/Ce-YSZ powder via a polymerization route

    , Article Materials Science- Poland ; Volume 31, Issue 3 , 2013 , Pages 343-349 ; 01371339 (ISSN) Abolghasemi, Z ; Tamizifar, M ; Arzani, K ; Nemati, A ; Khanfekr, A ; Bolandi, M ; Sharif University of Technology
    Oficyna Wydawnicza Politechniki Wroclawskiej  2013
    Abstract
    Pechini process was used for preparation of three kinds of nanocrystalline powders of yttria-stabilized zirconia (YSZ): doped with 1.5 mol% nickel oxide, doped with 15 mol% ceria, and doped with 1.5 mol% nickel oxide plus 15 mol% ceria. Zirconium chloride, yttrium nitrate, cerium nitrate, nickel nitrate, citric acid and ethylene glycol were polymerized at 80 °C to produce a gel. XRD, SEM and TEM analyses were used to investigate the crystalline phases and microstructures of obtained compounds. The results of XRD revealed the formation of nanocrystalline powder at 900 °C. Morphology of the powder calcined at 900 °C, examined with a scanning electron microscope, showed that the presence of... 

    Utilization of least square support vector machine (LSSVM) for electrical resistivity prediction of the zn-mn-s nanocrystalline semiconductor films

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 3, Issue PARTS A, B, AND C , 2012 , Pages 1099-1104 ; 9780791845196 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this investigation, application of the least square support vector machine (LSSVM) for modeling of the electrical resistivity of the magnetic Zn-Mn-S nanocrystalline semiconductor films has been described. The model has been trained based on the experimental data obtained from a published work by Sreekantha Reddy et al. The model inputs are temperature and variations in the concentrations of Zn, Mn. The results indicate that LSSVM is able to be used for accurate prediction of the electrical resistivity of the Zn-Mn-S nanocrystalline semiconductor films  

    Synthesis and characterization of bioactive glass/forsterite nanocomposites for bone and dental implants

    , Article Ceramics - Silikaty ; Volume 56, Issue 4 , 2012 , Pages 331-340 ; 08625468 (ISSN) Kamalian, R ; Yazdanpanah, A ; Moztarzadeh, F ; Ravarian, R ; Moztarzadeh, Z ; Tahmasbi, M ; Mozafari, M ; Sharif University of Technology
    2012
    Abstract
    In this research, bioactive glass (BG) of the type CaO-P2O 5-SiO2 and nanocrystalline forsterite (NF) bioceramic were successfully synthesized via sol-gel processing method. Heat-treatment process was done to obtain phase-pure nanopowders. After characterization of each sample, the nanocomposite samples were prepared by cold pressing method and sintered at 1000°C. The samples were fully characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) analyses. The average nanocrystallite size was determined using the Debye-Scherrer's formula 19.6 nm. The bioactivity was examined in vitro... 

    Structural, magnetic, and optical properties of zinc-and copper-substituted nickel ferrite nanocrystals

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 25, Issue 7 , 2012 , Pages 2443-2455 ; 15571939 (ISSN) Tehrani, F. S ; Daadmehr, V ; Rezakhani, A. T ; Akbarnejad, R. H ; Gholipour, S ; Sharif University of Technology
    Springer  2012
    Abstract
    Ferrite nanocrystals are an interesting material due to their rich physical properties. Here we add nonmagnetic dopants Zn and Cu to nickel ferrite nanocrystals, Ni1-xMxFe2O4 (0 ≤ x ≤ 1, M = Cu, Zn), and study how relevant properties of the samples are modified accordingly. Basically, these dopings cause a rearrangement of Fe +3 ions into the two preexisting octahedral and tetrahedral sites. In fact, this, we show, induces pertinent magnetic properties of the doped samples. In the case of the Cu-doping, the Jahn-Teller effect also emerges, which we identify through the Fourier Transform Infra-Red Spectroscopy of the samples. Moreover, we show an increase in the lattice parameters of the... 

    Low temperature nanocrystalline TiO 2-Fe 2O 3 mixed oxide by a particulate sol-gel route: Physical and sensing characteristics

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 46 , September , 2012 , Pages 43-51 ; 13869477 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Nanocrystalline TiO 2-Fe 2O 3 thin films and powders were prepared by a straightforward aqueous particulate sol-gel route at the low temperature of 300 °C. Titanium(IV) isopropoxide and iron(III) chloride were used as precursors, and hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powder crystallised at the low temperature of 300 °C, containing anatase-TiO 2 and hematite-Fe 2O 3 phases. Furthermore, it was found that Fe 2O 3 retarded the anatase-to-rutile transformation up to 500 °C. The activation energies for crystallite growth of TiO 2... 

    Synthesis of thoria nanoparticles via the hydrothermal method in supercritical condition

    , Article Materials Letters ; Volume 81 , 2012 , Pages 99-101 ; 0167577X (ISSN) Moeini, M ; Malekzadeh, A ; Ahmadi, S. J ; Hosseinpour, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Thorium dioxide (thoria) nano-particle was synthesized by employing supercritical water (SCW) as an excellent reaction environment for hydrothermal crystallization of metal oxide particles. This method is ideal for production of ultrafine powder having controlled stoichiometry, high quality, purity and crystallinity. The nano-crystalline thoria was prepared in a stainless steel (316 L) autoclave, fed with an aqueous solution of Th(NO 3) 4.5H 2O as a reactant and took place under SCW condition up to 450 °C for 45 min. The product was recovered and characterized by X-Ray Diffraction (XRD), Thermal Gravimetry Analysis (TG/DTA) and Brunauer, Emmett and Teller (BET) surface area analysis. The... 

    Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method

    , Article Ultrasonics Sonochemistry ; Volume 19, Issue 4 , 2012 , Pages 841-845 ; 13504177 (ISSN) Mohseni Meybodi, S ; Hosseini, S. A ; Rezaee, M ; Sadrnezhaad, S. K ; Mohammadyani, D ; Sharif University of Technology
    2012
    Abstract
    A sonochemistry-based synthesis method was used to produce nanocrystalline nickel oxide powder with ∼20 nm average crystallite diameter from Ni(OH)2 precursor. Ultrasound waves were applied to the primary solution to intensify the Ni(OH)2 precipitation. Dried precipitates were calcined at 320 °C to form nanocrystalline NiO particles. The morphology of the produced powder was characterized by transmission electron microscopy. Using sonochemical waves resulted in lowering of the size of the nickel oxide crystallites. FT-IR spectroscopy and X-ray diffraction revealed high purity well-crystallized structure of the synthesized powder. Photoluminescence spectroscopy confirmed production of a wide...