Loading...
Search for: nitrates
0.009 seconds
Total 89 records

    Synthesis of Superabsorbents Based on Agar and Modified Agar and Investigation of their Applications in Controlled Release of Potassium Nitrate as a Sample of Ionic Fertilizers

    , M.Sc. Thesis Sharif University of Technology Afjeh, Sofieh (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    This thesis focouses on the preparation and super-swelling behavior of two superabsorbent hydrogel. In the first section, a new superabsorbent hydrogel based on agar was prepared and the effect of the ratio of some components(AA, AAM, MBA, APS and agar) on the swelling capasity of the hydrogel was studied. Maximum water absorbency of the optimized final product was found to be 614.5 g/g in distilled water. The structure of the hydrogel was characterized by FT-IR method and morphology of the samples was examined by scanning electron microscopy(SEM). Swelling behavior properties of optimized hydrogel sample in different swelling medium were investigated. In the second section, we report the... 

    A Study on Soil Microbial Fuel Cell for Producing Energy and Bioremediation

    , M.Sc. Thesis Sharif University of Technology Afsham, Neda (Author) ; Yaghmaei, Soheila (Supervisor) ; Roshandel, Ramin (Supervisor)
    Abstract
    With the current demands in alternative methods of energy production and increased utilization of existing energy sources, microbial fuel cells have become an important field of research. In a microbial fuel cell, organic and inorganic compounds can be oxidized by microbial catabolism at the anode to generate direct electricity. A kind of microbial fuel cell (MFC) is sediment microbial fuel cell (SMFC) consists of an anode electrode embedded in the anaerobic sediment and a cathode electrode suspended in the overlying aerobic water. microorganisms produce electrons by oxidation of organic or inorganic compounds in the sediment at anode electrode, while oxygen is reduced in the water by... 

    The Effect of Sulphate Concentration on Nitrogen Removal in MLE Bioreactor

    , M.Sc. Thesis Sharif University of Technology Ebrahimiazar, Maryam (Author) ; Borghei, Mehdi (Supervisor)
    Abstract
    Discharging wastewater effluents to water bodies has many detrimental impacts on water quality. Thus, to prevent issues such as eutrophication and oxygen depletion, nitrogen removal is often required in wastewater treatment plants. Biological nitrification and denitrification, in comparison to physical and chemical methods, is more cost-effective and environmentally friendly, and this makes it one of the most commonly used approaches for nitrogen removal. In this work, nitrification and denitrification process and the effect of sulphate on this process is studied in a moving bed biofilm reactor (MBBR). The method used is modified LUDZACK-ETTINGER (MLE) which has an initial denitrification... 

    Performance Evaluation of Nitrate Removal from Drinking Water Using Microbial Fuel Cell

    , M.Sc. Thesis Sharif University of Technology Irani, Vahid (Author) ; Gobal, Freydoon (Supervisor) ; Sajadi, Ali Albar (Supervisor)
    Abstract
    Nitrate can be used as an oxidant in a cathode chamber of microbial fuel cell. Nitrate is known to be a pollutant of water particularly underground water and is considered a carcinogen of water. Nitrate was used in the cathode chamber of a microbial fuel cell as an oxidant that lead to simultaneous generation of electricity, removal of organic matter in anode, and removal of nitrate in the cathode. Using nitrate generated a voltage of 151 mV with an external resistance of 1000Ω. The maximum power density achieved was 1.375 mW/m2 with an external resistance of 800Ω. Seven days after the cell became operational and without the presence of a catalyst, the amount of COD had decreased by 25... 

    On Site wastewater Treatment for Reuse

    , M.Sc. Thesis Sharif University of Technology Ashrafnezhad Meygoli, Mohammad (Author) ; Hashemian, Jamaloddin (Supervisor) ; Saidi, Mohammad Reza (Supervisor) ; Mirzai, Mohamad (Supervisor)
    Abstract
    With the aim of making a pilot in two-steps, this thesis at 4 month accomplished. In first step, municipal sewage after passing of a septic tank loaded with daily 2 or 4m3/m2 rate to a vermi-filter while removal rate of COD was 83 and 64 percent respectively. In addition, the turbidity removal rate was 92 and 83 percent respectively. The results showed that vermi-filter is a suitable and cheap way for on-site wastewater treatment that is environmentally agreeable and odorless. Furthermore, the treated sewage is suitable for irrigate and flush tank usage. In the second step, for ground water denitrification, a synthetic wastewater with high nitrate, which nitrate is initially 13.5ppm NO3-N... 

    Modelling Point and non Point Source of Nitrate with SWAT in the Jajrood River Watershed

    , M.Sc. Thesis Sharif University of Technology Jamshidi, Mahdi (Author) ; Tajrishy, Masoud (Supervisor)
    Abstract
    To investigate boiling heat transfer characteristics of nanofluids, transient quenching¬ experiments of a high temperature silver sphere in water-based nanofluids with Ag and TiO2 nanoparticles were performed. A silver sphere of 10 mm in diameter at the initial temperature of 700o C was quenched in the nanofluids at the temperature of 90o C. The results showed considerable reduction in the quenching ability of nanofluids compared to that of pure water. The presence of nanoparticles in water caused film boiling mode to vanish at lower temperatures depending on the mixture concentration. Computed heat transfer rates in nanofluids were lower than those in pure water. In the quenching... 

    Synthesis and Characterization of Praseodymium Nickelate for Low Temperature Solid Oxide Fuel Cell Cathode

    , M.Sc. Thesis Sharif University of Technology Naeini, Mina (Author) ; Faghihi Sani, Mohammad Ali (Supervisor)
    Abstract
    Solid oxide fuel cells as high temperature electrochemical devices draw much attention in the last decades due to their fuel flexibility, high efficiency and low pollution. However, lowering operating temperature from about 850°C to around 650°C without significant overpotential loss, in order to lower costs and increase cells life time has remained a challenge. Recently, a new family of mixed ionic and electronic conducting ceramics (MIECs) which are formulated Ln2NiO4+δ (Ln= La,Nd,Pr) and crystallized in Ruddlesden–Popper structure, have been regarded as appropriate cathode materials for the low or intermediate temperature solid oxide fuel cells (IT-SOFC). Amongst these compounds,... 

    A Study on Morphology, Structure and Properties of Silver and Gold Coatings Applied by a Chemical Reduction Deposition Method Using Double-Spray Device

    , M.Sc. Thesis Sharif University of Technology Bakhshizadeh, Ali (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Silver and gold are precious, expensive metals and are used in various applications, such as jewellery and ornamentals, electronics and optics. In the present study, soda-lime glass surfaces firstly were activated with acidic stannous chloride solution. Then, silver and gold were coated on these surfaces via simultaneous spraying of two solution: A silver- or gold-complex bearing solution and a reducing agent (Dextrose for Ag and H2O2 for Au) bearing solution. For silver coating, the effect of various parameters such as time, reducing agent concentration, number of passes, presence and concentration of Urotrpin and Decamethylcyclopentasiloxane (DMCPS) as microstructural modifiers and... 

    Polymeric Membrane Modification for Nitrogen-Compounds Removal from Aqueous Phase

    , M.Sc. Thesis Sharif University of Technology Amiri, Sajjad (Author) ; Musavi, Abbas (Supervisor) ; Bastani, Dariush (Supervisor)
    Abstract
    In this research, a novel nanofiltration membrane was used to separate nitrate from water as a nitrogen-containing compound. The membrane was fabricated by interfacial polymerization on the modified polysulfone substrate. To improve the efficiency of nitrate removal, several surface and bulk modifiers were used. As modified with LiCl and PVP polymer, the substrate matrix was modified to have the highest porosity to reduce the mass transfer resistance and the much surface area to form a polyamide layer on it. The polyamide layer was then synthesized by interfacial polymerization using a blend of MPD and PIP in different ratios (1: 1 optimum ratio) in reaction with TMC (optimum concentration... 

    Removal of Heavy Metal Ions and Wastewater Treatment by Using the Electrocoagulation Process

    , M.Sc. Thesis Sharif University of Technology Dehnavi, Mehdi (Author) ; Ghasemian, Saloumeh (Supervisor)
    Abstract
    Industrial wastewater treatment has always been one of the significant human being problems for the years. In particular, sewage containing heavy metals that, if discharged into nature, would have irreversible effects on the ecosystem and human health. Due to their toxic nature, heavy metals will reduce the efficiency of wastewater treatment systems if they are not efficiently treated. Also, the removal of Nitrate from the wastewater, which is one of the most stable nitrogen oxides, has always been a serious human problem in the treatment of effluents due to their high solubility in water. The simultaneous presence of nitrate and heavy metals in the effluent will cause many problems in the... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; 2018 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions

    , Article Chemical Engineering Communications ; Volume 206, Issue 4 , 2019 , Pages 495-508 ; 00986445 (ISSN) Rezaee, R ; Nasseri, S ; Mahvi, A. H ; Nabizadeh, R ; Mousavi, S. A ; Maleki, A ; Alimohammadi, M ; Jafari, A ; Hemmati Borji, S ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this study, four types of mixed matrix membranes were fabricated using polysulfone (as the base polymer) and different contents of graphene oxide (GO) nanosheets (as modifier) through wet phase inversion method. Based on the amounts of GO (0, 0.5, 1, and 2 wt%), the synthesized membranes named as M1, M2, M3, and M4, respectively. The membranes characteristics were evaluated using FE-SEM, FT-IR, and water contact angle measurements. In addition, the performance of the prepared membranes was investigated in terms of basic parameters: filtrate water flux, nitrate removal efficiency, and antifouling properties. Results showed significant improvements of the characteristics of modified... 

    From nitrate determination using microfluidic sensors to photocatalytic process intensification

    , Article International Journal of Environmental Analytical Chemistry ; 2020 Sohrabi, S ; Keshavarz Moraveji, M ; Mousavi, S ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This review paper is devoted to the intensification of processes for nitrate removal. First, the developments of microfluidic sensors for nitrate detection and analysis have addressed. Second, the process variables of photocatalytic nitrate removal have been categorized according to their relationship with activity, selectivity and stability of the catalyst. The objective of this classification is to generate guidelines toward the photocatalytic process optimization. Third, because of the fact that a single method for nitrate removal faces some challenges, hybrid methods have been presented, and the best choice for nitrate removal can be referred to as photocatalytic – reverse osmosis... 

    Michael-addition-initiated chemoselective three-component reaction for the synthesis of 2-(3-oxo-1,3-diarylpropyl)malononitrile derivatives using cerium(iv) ammonium nitrate in phosphorus ionic liquid

    , Article Polycyclic Aromatic Compounds ; 2021 ; 10406638 (ISSN) Bahrami, G. R ; Batooie, N ; Mousavi, R ; Miraghaee, S ; Hosseinzadeh, N ; Mousavian, M ; Hoshyari, A ; Sajadimajd, S ; Mohammadi, B ; Hatami, R ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    The aim of this research is the study of hexyltriphenylphosphonium bromide (HTPB) ionic liquid as a bifunctional promoter (solvent and catalyst) in the presence of cerium(IV) ammonium nitrate as a single electron oxidant for the Michael reaction at room temperature and solvent-free conditions. A novel, one-pot and environmentally benign the process to achieve the chemoselective of 2-(3-oxo-1,3-diarylpropyl)malononitrile derivatives instead of 2-(1,3-diarylallylidene)malononitriles using a three-component reaction involving acetophenone derivatives, various aromatic aldehydes and malononitrile was developed. This protocol is simple and provides biologically interesting products in good... 

    Michael-Addition-Initiated chemoselective three-component reaction for the synthesis of 2-(3-Oxo-1,3-diarylpropyl)malononitrile derivatives using cerium(IV) ammonium nitrate in phosphorus ionic liquid

    , Article Polycyclic Aromatic Compounds ; Volume 42, Issue 9 , 2022 , Pages 6328-6336 ; 10406638 (ISSN) Bahrami, G ; Batooie, N ; Mousavi, S. R ; Miraghaee, S. S ; Hosseinzadeh, N ; Mousavian, S ; Hoshyari, A ; Sajadimajd, S ; Mohammadi, B ; Hatami, R ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The aim of this research is the study of hexyltriphenylphosphonium bromide (HTPB) ionic liquid as a bifunctional promoter (solvent and catalyst) in the presence of cerium(IV) ammonium nitrate as a single electron oxidant for the Michael reaction at room temperature and solvent-free conditions. A novel, one-pot and environmentally benign the process to achieve the chemoselective of 2-(3-oxo-1,3-diarylpropyl)malononitrile derivatives instead of 2-(1,3-diarylallylidene)malononitriles using a three-component reaction involving acetophenone derivatives, various aromatic aldehydes and malononitrile was developed. This protocol is simple and provides biologically interesting products in good... 

    From nitrate determination using microfluidic sensors to photocatalytic process intensification

    , Article International Journal of Environmental Analytical Chemistry ; Volume 102, Issue 10 , 2022 , Pages 2416-2450 ; 03067319 (ISSN) Sohrabi, S ; Moraveji, M. K ; Mousavi, S ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    This review paper is devoted to the intensification of processes for nitrate removal. First, the developments of microfluidic sensors for nitrate detection and analysis have addressed. Second, the process variables of photocatalytic nitrate removal have been categorized according to their relationship with activity, selectivity and stability of the catalyst. The objective of this classification is to generate guidelines toward the photocatalytic process optimization. Third, because of the fact that a single method for nitrate removal faces some challenges, hybrid methods have been presented, and the best choice for nitrate removal can be referred to as photocatalytic – reverse osmosis... 

    Bioelectricity Generation in a Soil Microbial Fuel Cell with Biocathode Denitrification

    , Article ; Volume 37, Issue 19 , 2015 , Pages 2092-2098 ; 15567036 (ISSN) Afsham, N ; Roshandel, R ; Yaghmaei, S ; Vajihinejad, V ; Sherafatmand, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    A soil microbial fuel cell was investigated that uses soil and groundwater to generate electricity. The cathode surface area and materials are always important for increasing power. Power density was shown to be a linear function of cathode surface area. Biofilm formation on the graphite cathode was observed to be helpful in enhancing power output and maximum performance reached 89.2 mW/m2. As an application for the insertion-type soil microbial fuel cell, nitrate removing was investigated in cathode. Nitrate was reduced in an aerobic cathode at the rate of 37.5 mg nitrate/lit/day and 55 mg nitrate/lit/day in anaerobic cathode  

    Vulnerability assessment of urban groundwater resources to nitrate: the case study of Mashhad, Iran

    , Article Environmental Earth Sciences ; Volume 76, Issue 1 , 2017 ; 18666280 (ISSN) Asadi, P ; Ataie Ashtiani, B ; Beheshti, A ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Groundwater vulnerability assessment of urban areas is a challenging task in the fast trend of urbanization around the globe. This study introduces a new approach for modifying well-known parameters of common vulnerability indexes to adjust them for urban areas. The approach is independent of a specific weighting system. The aquifer of Mashhad city, contaminated by domestic wastewater, is selected as a case in this study. In order to evaluate the aquifer vulnerability due to anthropogenic activities, at first, parameters of depth to groundwater, recharge, land use, and soil are modified based on their basic concepts and their influences on contamination attenuation. Then, the modified... 

    Optimization of multistage biological nutrient removal reactors for removal of nitrogen and phosphorus from saline refinery wastewater

    , Article International Journal of Environmental Science and Technology ; Volume 17, Issue 12 , 2020 , Pages 4865-4878 Delashoob, A ; Borghei, S. M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    The present study aimed at investigating the biological treatment of nitrogen and phosphorus from the saline wastewater in various systems. In the end, moving bed biofilm reactor and anaerobic/anoxic/aerobic (AOA) were chosen as the best systems. In the present study, the investigations were carried out in two 24-h and 12-h retention times for three nitrogen concentrations, 200 mg/l, 300 mg/l, and 400 mg/l, two phosphorus concentrations, 14 mg/l and 20 mg/l, three Chemical oxygen demand (COD) concentrations, 800 mg/l, 1000 mg/l, and 1200 mg/l, and four salt concentrations, 10 g/l, 12 g/l, 17 g/l, and 20 g/l. The obtained results indicated that the COD removal percentage was high in a range... 

    Solid state preparation and photocatalytic activity of bismuth oxybromide nanoplates

    , Article Research on Chemical Intermediates ; Volume 42, Issue 3 , 2016 , Pages 2429-2447 ; 09226168 (ISSN) Bijanzad, K ; Tadjarodi, A ; Akhavan, O ; Moghaddasi Khiavi, M ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    A mechanochemical method was applied to prepare bismuth oxybromide (BiOBr) nanoplates using bismuth nitrate pentahydrate and potassium bromide for 15 (A15), 30 (A30) and 60 (A60) minutes. Scanning electron microscopy studies showed that all the products were comprised of nanoplates. Aggregated nanoplates along with microblocks were observed for A15 and A30 and the entire morphology was not homogenous. The morphology of A60 was uniform and consisted of thin and isolated nanoplates. Evaluation of the X-ray diffraction patterns showed that the purity and crystallinity of the products improved by increasing the milling time. The energy dispersive X-ray analysis confirmed the high purity of the...