Loading...
Search for: nitrates
0.007 seconds
Total 89 records

    Modification of carbohydrate polymers via grafting in Air. 2. Ceric-Initiated graft copolymerization of acrylonitrile onto natural and modified polysaccharides [electronic resource]

    , Article Starch - Stärke ; Volume 54, Issue 10, pages 482–488, October 2002 Pourjavad, A. (Ali) ; Zohuriaan-Mehr, Mohammad J
    Abstract
    Acrylonitrile (AN) was grafted onto various natural and modified polysaccharides (i.e., gum arabic, gum tragacanth, xanthan gum, sodium alginate, chitosan, sodium carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose) by using ceric-carbohydrate redox initiating system. After overcoming practical problems, mainly from the high viscosity of the aqueous solutions of the different substrates, the graft copolymerization reactions were run either in air or in N2 atmosphere under similar conditions. Grafting was confirmed using chemical and spectral (FTIR) proofs. The reactions were kinetically investigated using semi-empirical expressions and time-temperature profiles. An anomalous... 

    In-situ nitrate remediation using nano iron/nickel particles

    , Article Environment Protection Engineering ; Vol. 40, issue. 3 , 2014 , p. 75-86 Fadaei Tehrani, M. R ; Vossoughi, M ; Shamsai, A ; Sharif University of Technology
    Abstract
    Originally, the application of nano zero valent iron/nickel (nZVI/Ni) particles for nitrate removal in porous media was studied. nZVI/Ni was prepared and employed in batch and continuous modes. Based on batch experiments, the reaction kinetics was consistent with the adsorption model by the order of 1-1.5. The variation of the kinetics order depends on pH and nickel content. So that highest reactivity was observed for nZVI with 10% of Ni at pH ≤ 3. Nitrate remediation in a continuous system was mostly influenced by seepage velocity, quantity and freshness of nZVI/Ni and particle size of porous media. In a batch mode, the maximum nitrate removal was 99% while in a continuous mode it did not... 

    Development and biomedical application of nanocomposites: In situ fabrication of ZnO-PbO nanocomposite through microwave method

    , Article Materials Technology ; Vol. 29, issue. 4 , July , 2014 , p. 227-231 Rajabi, A ; Aieneravaie, M ; Dorosti, V ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    A novel nanocomposite of ZnO-PbO with flower-like nanostructure was fabricated from zinc acetate and lead nitrate as principle raw materials via an in situ process. The novelty of this study consists in the use of a common approach for fabricating of ZnO and PbO nanoparticles simultaneously. From these experiments the conclusion might be drawn that Zn(NH4) 2 4+ ions and Pb(OH)2 act as precursors for the nucleation and growth of ZnO and PbO respectively under microwave irradiation. The precursors formation were carried at two stages: reaction between zinc ions and lead nitrate with ammonium ion and hydroxide sodium respectively. The average crystalline size of Zno and PbO has been analysed by... 

    Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01

    , Article World Journal of Microbiology and Biotechnology ; Volume 29, Issue 6 , June , 2013 , Pages 1039-1047 ; 09593993 (ISSN) Partovi, M ; Lotfabad, T. B ; Roostaazad, R ; Bahmaei, M ; Tayyebi, S ; Sharif University of Technology
    2013
    Abstract
    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals.... 

    Thorough tuning of the aspect ratio of gold nanorods using response surface methodology

    , Article Analytica Chimica Acta ; Volume 779 , 2013 , Pages 14-21 ; 00032670 (ISSN) Hormozi Nezhad, M. R ; Robatjazi, H ; Jalali Heravi, M ; Sharif University of Technology
    2013
    Abstract
    In the present work a central composite design based on response surface methodology (RSM) is employed for fine tuning of the aspect ratios of seed-mediated synthesized gold nanorods (GNRs). The relations between the affecting parameters, including ratio of l-ascorbic acid to Au3+ ions, concentrations of silver nitrate, CTAB, and CTAB-capped gold seeds, were explored using a RSM model. It is observed that the effect of each parameter on the aspect ratio of developing nanorods highly depends on the value of the other parameters. The concentrations of silver ions, ascorbic acid and seeds are found to have a high contribution in controlling the aspect ratios of NRs. The optimized parameters led... 

    Synthesis of nanocrystalline Ni/Ce-YSZ powder via a polymerization route

    , Article Materials Science- Poland ; Volume 31, Issue 3 , 2013 , Pages 343-349 ; 01371339 (ISSN) Abolghasemi, Z ; Tamizifar, M ; Arzani, K ; Nemati, A ; Khanfekr, A ; Bolandi, M ; Sharif University of Technology
    Oficyna Wydawnicza Politechniki Wroclawskiej  2013
    Abstract
    Pechini process was used for preparation of three kinds of nanocrystalline powders of yttria-stabilized zirconia (YSZ): doped with 1.5 mol% nickel oxide, doped with 15 mol% ceria, and doped with 1.5 mol% nickel oxide plus 15 mol% ceria. Zirconium chloride, yttrium nitrate, cerium nitrate, nickel nitrate, citric acid and ethylene glycol were polymerized at 80 °C to produce a gel. XRD, SEM and TEM analyses were used to investigate the crystalline phases and microstructures of obtained compounds. The results of XRD revealed the formation of nanocrystalline powder at 900 °C. Morphology of the powder calcined at 900 °C, examined with a scanning electron microscope, showed that the presence of... 

    Cobalt supported on CNTs-covered γ- and nano-structured alumina catalysts utilized for wax selective Fischer-Tropsch synthesis

    , Article Journal of Natural Gas Chemistry ; Volume 21, Issue 6 , 2012 , Pages 713-721 ; 10039953 (ISSN) Hemmati, M. R ; Kazemeini, M ; Khorasheh, F ; Zarkesh, J ; Rashidi, A ; Sharif University of Technology
    2012
    Abstract
    Cobalt supported on carbon nanotubes (CNTs)-covered alumina has been recently developed and successfully utilized as a catalyst in Fischer-Tropsch synthesis (FTS). Problems associated with shaping of Co/CNTs into extrudates or pellets as well as catalyst attrition rendered these materials unfavorable for industrial applications. In this investigation regular γ- and nano-structured (N-S) alumina as well as CNTs-covered regular γ- and N-S-alumina supports were impregnated by cobalt nitrate solution to make new cobalt-based catalysts which were also promoted by Ru. The catalysts were characterized and tested in a micro reactor to evaluate their applicability in FTS. γ-Al2O3 was prepared by... 

    Morphological manipulation of solvothermal prepared CdSe nanostructures by controlling the growth rate of nanocrystals as a kinetic parameter

    , Article Journal of Electronic Materials ; Volume 41, Issue 11 , 2012 , Pages 3050-3055 ; 03615235 (ISSN) Zarghami, V ; Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2012
    Abstract
    The morphological manipulation, structural characterization, and optical properties of different cadmium selenide (CdSe) nanostructures are reported. Two different CdSe nanostructures, i.e., nanorods and nanoparticles, were grown by controlling the concentration of precursors (i.e., cadmium nitrate and selenium dioxide) in ethanolamine solvent. By manipulating the kinetic parameter of the process (i.e., growth rate) under constant growth driving force (i.e., degree of supersaturation), the morphology of CdSe nanostructures can be tailored from nanorods to nanoparticles. The optical properties of CdSe nanostructures were investigated using ultraviolet-visible (UV-vis) spectroscopy. The... 

    A very simple method to synthesize nano-sized manganese oxide: An efficient catalyst for water oxidation and epoxidation of olefins

    , Article Dalton Transactions ; Volume 41, Issue 36 , Jul , 2012 , Pages 11026-11031 ; 14779226 (ISSN) Najafpour, M. M ; Rahimi, F ; Amini, M ; Nayeri, S ; Bagherzadeh, M ; Sharif University of Technology
    RSC  2012
    Abstract
    Nano-sized particles of manganese oxides have been prepared by a very simple and cheap process using a decomposing aqueous solution of manganese nitrate at 100 °C. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction spectrometry have been used to characterize the phase and the morphology of the manganese oxide. The nano-sized manganese oxide shows efficient catalytic activity toward water oxidation and the epoxidation of olefins in the presence of cerium(iv) ammonium nitrate and hydrogen peroxide, respectively  

    Synthesis and characterization of Ce-TZP/Al 2O 3 nanocomposites prepared via aqueous combustion

    , Article Journal of Alloys and Compounds ; Volume 514 , February , 2012 , Pages 150-156 ; 09258388 (ISSN) Asadirad, M ; Yoozbashizadeh, H ; Sharif University of Technology
    2012
    Abstract
    Nanocomposites of Ce-TZP/Al 2O 3 were synthesized by aqueous combustion, and urea, ammonium acetate and glycine were used as mixtures of fuels with the corresponding metal nitrates. Thermodynamic modeling was conducted to anticipate the effect of the alumina content on the exothermicity of the combustion procedure. The thermodynamic properties of the combustion reaction indicated that as the alumina content increased, the amount of gases produced during the reaction increased with a decrease in the adiabatic temperature. Furthermore, to reduce the particle size of the powders, a series of combustion reactions were performed to optimize the fuel composition and alumina content. Ce 0.1Zr 0.9O... 

    Biological evaluation of a novel tissue engineering scaffold of Layered Double Hydroxides (LDHs)

    , Article Key Engineering Materials, 6 November 2011 through 9 November 2011 ; Volume 493-494 , November , 2012 , Pages 902-908 ; 10139826 (ISSN) ; 9783037852552 (ISBN) Fayyazbakhsh, F ; Solati Hashjin, M ; Shokrgozar, M. A ; Bonakdar, S ; Ganji, Y ; Mirjordavi, N ; Ghavimi, S. A ; Khashayar, P ; Sharif University of Technology
    2012
    Abstract
    Bone Tissue Engineering (BTE) composed of three main parts: scaffold, cells and signaling factors. Several materials and composites are suggested as a scaffold for BTE. Biocompatibility is one of the most important property of a BTE scaffold. In this work synthesis of a novel nanocomposite including layered double hydroxides (LDH) and gelatin is carried out and its biological properties were studied. The co-precipitation (pH=11) method was used to prepare the LDH powder, using calcium nitrate, Magesium nitrate and aluminum nitrate salts as starting materials. The resulted precipitates were dried. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron... 

    Photo-induced growth of silver nanoparticles using UV sensitivity of cellulose fibers

    , Article Applied Surface Science ; Volume 258, Issue 7 , 2012 , Pages 2373-2377 ; 01694332 (ISSN) Omrani, A. A ; Taghavinia, N ; Sharif University of Technology
    2012
    Abstract
    A simple method has been demonstrated to grow silver nanoparticles on the surface of cellulose fibers. The preparation is based on photo-activation of surface by ultraviolet (UV) photons, followed by chemical reduction of silver nitrate. It is found that the concentration of silver nitrate in the solution is not a determining factor, while UV intensity affects the rate of initial growth and determines the final concentration of the loaded silver. We explain the phenomena based on a model including the number of reducing sites on the surface of cellulose fibers activated by UV photons, and a release mechanism that causes a slow rate of dissolution of silver back into the solution  

    Effect of inhibitors on the corrosion of automotive aluminum alloy in ethylene glycol-water mixture

    , Article Corrosion ; Volume 67, Issue 12 , 2011 ; 00109312 (ISSN) Asadikiya, M ; Ghorbani, M ; Sharif University of Technology
    2011
    Abstract
    The effect of some inhibitors consisting of sodium nitrite (NaNO 2), sodium nitrate (NaNO 3), sodium molybdate (Na 2MoO 4), and sodium silicate (Na 2SiO 3) on the corrosion behavior of aluminum alloy 3303 (UNS A93303) in a water and ethylene glycol (C 2H 6O 2) mixture was investigated. In the first part, the tests were established without any galvanic coupling. In the second part, the tests were established with galvanic connections between the aluminum alloy and mild steel, stainless steel, copper, brass, and solder. Results show that the best corrosion inhibitor in both situations is sodium nitrate, according to its abilities to reduce corrosion rate, passivate the aluminum surface, and... 

    Preparation of acrylated agarose-based hydrogels and investigation of their application as fertilizing systems

    , Article Journal of Applied Polymer Science ; Volume 122, Issue 4 , November , 2011 , Pages 2424-2432 ; 00218995 (ISSN) Pourjavadi, A ; Sadat Afjeh, S ; Seidi, F ; Salimi, H ; Sharif University of Technology
    2011
    Abstract
    In this study, we attempt to synthesize novel acrylated agarose (ACAG)-based hydrogels with three different crosslinking densities. Acrylate groups were inserted onto agarose (AG) backbone through homogeneous reaction of acrylic monomers with AG backbone. Hydrogels were synthesized through radical copolymerization of a mixture of acrylic acid and 2-hydroxyethyl acrylate with ACAG in aqueous solution using ammonium persulfate as an initiator. Infrared spectroscopy (FTIR) was carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was assessed by scanning electron microscopy. The equilibrium swelling capacities of synthesized hydrogels were evaluated... 

    Upgrading activated sludge systems and reduction in excess sludge

    , Article Bioresource Technology ; Volume 102, Issue 22 , November , 2011 , Pages 10327-10333 ; 09608524 (ISSN) Hazrati, H ; Shayegan, J ; Sharif University of Technology
    2011
    Abstract
    Most of 200 Activated Sludge Plant in Iran are overloaded and as a result, their efficiency is low. In this work, a pilot plant is manufactured and put into operation in one of the wastewater treatment plants in the west of Tehran. Instead of conventional activated sludge, a membrane bioreactor and an upflow anaerobic sludge blanket reactor used as a pretreatment unit in this pilot. For the sake of data accuracy and precision, an enriched municipal wastewater was opted as an influent to the pilot. Based on the attained result, the optimum retention time in this system was 4. h, and the overall COD removal efficiency was 98%. As a whole, the application of this retrofit would increase the... 

    A simple granulation technique for preparing high-porosity nano copper oxide(II) catalyst beads

    , Article Particuology ; Volume 9, Issue 5 , 2011 , Pages 480-485 ; 16742001 (ISSN) Ahmadi, S. J ; Outokesh, M ; Hosseinpour, M ; Mousavand, T ; Sharif University of Technology
    Abstract
    A simple and efficient method was developed for fabricating spherical granules of CuO catalyst via a three-step procedure. In the first step, copper oxide nanoparticles were synthesized by hydrothermal decomposition of copper nitrate solution under supercritical condition. Then, they were immobilized in the polymeric matrix of calcium alginate, and followed by high-temperature calcination in an air stream as the third step, in which carbonaceous materials were oxidized, to result in a pebble-type catalyst of high porosity. The produced CuO nanoparticles were characterized by transmission electron microscopy (TEM) that revealed an average size of 5 nm, X-ray diffractometry (XRD), and thermo... 

    Bench-scaled nano-Fe 0 permeable reactive barrier for nitrate removal

    , Article Ground Water Monitoring and Remediation ; Volume 31, Issue 4 , 2011 , Pages 82-94 ; 10693629 (ISSN) Hosseini, S. M ; Ataie Ashtiani, B ; Kholghi, M ; Sharif University of Technology
    Abstract
    There are many fundamental problems with the injection of nano-zero-valent iron (NZVI) particles to create permeable reactive barrier (PRB) treatment zone. Among them the loss of medium porosity or pore blocking over time can be considered which leads to reduction of permeability and bypass of the flow and contaminant plume up-gradient of the PRB. Present study provides a solution for such problems by confining the target zone for injection to the gate in a funnel-and-gate configuration. A laboratory-scale experimental setup is used in this work. In the designed PRB gate, no additional material from porous media exists. NZVI (d 50 = 52 ± 5 nm) particles are synthesized in water mixed with... 

    Synthesis of nanostructured and nanoporous TiO2-AgO mixed oxide derived from a particulate sol-gel route: Physical and sensing characteristics

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 42, Issue 8 , August , 2011 , Pages 2481-2492 ; 10735623 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2011
    Abstract
    Nanocrystalline TiO2-AgO thin films and powders were prepared by an aqueous particulate sol-gel route at the low temperature of 573 K (300 °C). Titanium tetraisopropoxide and silver nitrate were used as precursors, hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the phase composition of the mixed oxide depends upon the annealing temperature, being a mixture of TiO2 and AgO in the range 573 K to 773 K (300 °C to 500 °C) and a mixture of TiO2, AgO, Ag2O at 973 K (700 °C). Furthermore, one of the smallest crystallite sizes was obtained for TiO... 

    Nitrate reduction by nano-Fe/Cu particles in packed column

    , Article Desalination ; Volume 276, Issue 1-3 , 2011 , Pages 214-221 ; 00119164 (ISSN) Hosseini, S. M ; Ataie Ashtiani, B ; Kholghi, M ; Sharif University of Technology
    Abstract
    In this work the application of a modified surface nano zero valent iron (NZVI) as bimetallic Fe/Cu particles to remove high concentration of NO3--N through packed sand column has been studied. Dispersed nano-Fe/Cu particles has been synthesized in water mixed ethanol solvent system (1:4v/v) and described by XRD pattern, TEM and SEM images and BET analyze. Batch experiments have been conducted to investigate the effect of percentage coating of Fe0 by Cu on the nitrate removal. Research on packed sand column (120cm length, 6.5cm inner diameter) has been done under conditions of Nano-Fe/Cu concentration (2, 5, and 8gl-1 of solution), high initial NO3--N concentration (100, 200, and 300mgl-1)... 

    Optimizing OLR and HRT in a UASB reactor for pretreating high- Strength municipal wastewater

    , Article Chemical Engineering Transactions ; Volume 24 , 2011 , Pages 1285-1290 ; 19749791 (ISSN) Hazrati, H ; Shayegan, J ; Sharif University of Technology
    Abstract
    This study was carried out for examination of a lab-scale UASB reactor for optimization of organic loading rate and hydraulic retention time. The total volume of the reactor was 5 1 with an effective height of 160 cm and diameter of 5 cm. This reactor was used to treat fortified municipal wastewater at volumetric organic loadings of 3.6, 7.2, 10.8, and 14.4 kg m3 d 1 at temperature 30°C. The result of present work indicated an optimum range for organic loading (7.2 to 10.8 kg m-3 d-1) with COD removal efficiency of about 85%. Moreover, optimum HRT for influent COD concentration of 1200mg/l is shown to be only 4 hours. Furthermore nitrate removal efficiency was about 80% at optimized organic...