Loading...
Search for: on-dynamics
0.032 seconds
Total 4472 records

    Investigating the Performance of Preformed Particle Gels (PPGs) for Conformance Control and Improve Oil Recovery in Heterogeneous Porous Media: Pore-Scale Analysis of Displacement Mechanisms

    , M.Sc. Thesis Sharif University of Technology Paprouschi, Aminsadegh (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Fatemi, Mobeen (Supervisor)
    Abstract
    According to the reported field experiences, excess water production from high permeable thief zones of oil reservoirs is the main source of severe operational problems and economic issues. Application of Preformed Particle Gels (PPGs) is an effective technique to overcome this problem. Static test analysis is a primary method for evaluating the performance of PPGs material at different conditions of pH, salinity, etc. However, the effect of the presence of oil and rock on the kinetics of swelling/de-swelling of PPGs is not well understood. Also, considering the vast field application of Co_2-based oil recovery methods, it is interesting to study the effect of carbon dioxide gas on swelling... 

    Modeling of Dynamic Kill in Gas-Condensate Well

    , M.Sc. Thesis Sharif University of Technology Daneshpajouh, Abouzar (Author) ; Shad, Saeed (Supervisor)
    Abstract
    By exploring huge gas-condensate reservoirs, three-phase transient flow modeling demonstrates its crucial role in designing dynamic kill, relief well parameters and kill procedure of such wells. Controlling gas-condensate well needs robust transient three phase models capable of capturing discontinuities in density, geometry and velocity of phases. In this paper, two phase Advection-Upstream-Splitting-Method hybrid scheme is extended to three-phase model capable of modeling blowout and dynamic kill in gas-condensate-water wells. Density and viscosity changes are calculated using Peng-Robinson equation of state and in according, flow model parameters are corrected.The capability of this model... 

    Investigating the Dynamic Amplification Factor for Pancake Progressive Collapse

    , M.Sc. Thesis Sharif University of Technology Pakbaz, Mohsen (Author) ; Rahimzadeh Rofouei, Fayyaz (Supervisor)
    Abstract
    Progressive collapse occurs when the loading path of a structure is changed so that the other structural elements loaded beyond their capacity and fail. Generally, structural progressive collapse is categorized in different types based on the failure progress mechanism. Most dramatic progressive collapse occurred in 1968 at the Ronan Point residential apartment through an internal gas explosion. The type of progressive collapse of the aforementioned building was the Pancake collapse. Widespread efforts have been put to introduce a simplified static procedure to simulate the removal column phenomenon as in the Pancake collapse, which is a dynamic event involving vibration of building... 

    A Dynamic Mesh Computational Fluid Dynamics Model of Lung on a Chip

    , M.Sc. Thesis Sharif University of Technology Mehrabian, Yalda (Author) ; Sani, Mehdi (Supervisor) ; Khayyat, Ali Akbar (Supervisor)
    Abstract
    Recent investigations on organs-on-chip devices have broadened our insight into the functions of the organs and their responses to pharmaceuticals. Studies on improving the efficiency of these chips are on going. The development of chips for growing various organs and possibly their possible interconnection are other hot topics in this field. This research is an attempt to simulate a Lung-on-a-Chip (LOC) device using Ansys Fluent software. Currently a new experimental technique for setting up a lung-on-a-chip device has been made public (Zamprogno et.al.ˏ̎ Second-generation lung-on-a-Chip with an array of stretchable alveoli made with a biological memvrane ̎ ˏComm. Biologyˏ2021ˏ4:168.). This... 

    Modeling, Simulation, and Sliding Mode Control Analysis of SQ15-06N Robot

    , M.Sc. Thesis Sharif University of Technology Firouzi Pouyaei, Hamed (Author) ; Khayyat, Amir Ali Akbar (Supervisor) ; Selk Ghafari, Ali (Supervisor)
    Abstract
    In this thesis, kinematic, dynamic modeling and simulation, and control of SQ15-06N industrial robot have been presented. This robot is mostly used in the painting industry. Studying the robot requires familiarity with the robot programming and the hardware used in the robot. In this research, robot characteristics such as repeatability, load carrying capacity and accessibility have been investigated. The principles of industrial robot programming and robot programming language have been studied. The use of simulation software is common due to cost savings, reduced time, no need for robots and controllers, and the ability to test programs in a virtual environment. For this purpose, the... 

    An Automated Investigative System of a Plough Movement by Using a Developed Displacement Sensor

    , M.Sc. Thesis Sharif University of Technology Abdul Hussein Al khayyat, Ahmad Abbas (Author) ; Selk Ghafari, Ali (Supervisor)
    Abstract
    It is so essential to study a safe dynamics of agricultural mechanical equipment during duty stroke, plus getting a rich information about the nature of the soil under processing and in many cases there are associated simultaneous problems, so the main aim of this study is to create a safe working conditions for such specific equipment to extend their life time span as possible as it could. This study will predict an un-usual working circumstances for agricultural tools including plough of course depending on some automated technologies with fast response supported by smooth working conditions. Simply, the proposed Investigative system consists of a linear potentiometric element with... 

    Analytical and Experimental Analyses of Nonlinear Vibrations in a Rotary Inverted Pendulum

    , M.Sc. Thesis Sharif University of Technology Rahimi Dolatabad, Mohammad Javad (Author) ; Khayyat, Amir Ali Akbar (Supervisor) ; Pasharavesh, Abdolreza (Co-Supervisor)
    Abstract
    Investigation of possible vibratory responses of dynamical systems around their stable equilibria is an essential step which must be taken before their both design and application. The attained results of such a study can largely help to prevent instability in closed-loop stabilized systems by avoiding excitation of the system in the neighborhood of its resonance. In this paper, nonlinear oscillations of a Rotary Inverted Pendulum (RIP) enjoying a full-state feedback controller is investigated. Lagrange’s equations are employed to derive an accurate 2-DoF mathematical model whose parameters are extracted by both measurement and 3D modeling of the real system components. The perturbative... 

    Vibration Behavior of Laminated Composite Beam Incorporated with MR (Magnetorheological) Fluid under Random Excitation

    , Ph.D. Dissertation Sharif University of Technology Momeni, Saman (Author) ; Behzad, Mehdi (Supervisor) ; Zabihollah, Abolghassem (Co-Supervisor)
    Abstract
    Laminated composite beams are being widely used in engineering applications, including aerospace and automobile where the structures are highly subjected to non-deterministic random loadings, requiring a reliable technique to ensure the stability of structure during operation. A Novel N-layer model of layerwise theory (LWT) for laminated composite beams incorporated with magnetorheological fluid (MR-laminated beams) is developed. In addition, a finite element model of tapered laminated composite beams incorporated with magnetorheological fluid (MR-tapered beam) based on layerwise theory is developed. The dynamic response of the present model for uniform and tapered beams have been compared... 

    Numerical Investigation of Various Parameters Influence in Atrium Efficiency Improvements for Building’s Natural Ventilation

    , M.Sc. Thesis Sharif University of Technology Farzan, Shahin (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    In order to improve the efficiency of atriums, effective parameters in ventilation and acceleration of airflow are numerous. Nevertheless, parameters such as shape and height of atrium, geometry of the inlet and outlets, opening areas and the presence of heat sources in each store play a vital role. In structures higher than one floor, there is no significant airflow in the upper floors and the ventilation of atrium is unpleasant for residents. Air movement in the building is done by buoyancy-driven force and hot air upward movement due to pressure differences.This study attempts to improve the natural ventilation performance with changing mentioned parameters. So for this purpose, 3D... 

    Simulation of Fluid Aliquoting in Centrifugal Microfluidics

    , M.Sc. Thesis Sharif University of Technology Yousefpour, Mohammad Hossein (Author) ; Moosavi, Ali (Supervisor) ; Arghavani, Jamal (Supervisor)
    Abstract
    In this thesis, a numerical analysis of micro chamber filling in centrifugal microfluidics is investigated. In the development of micro total analysis systems, it is often necessary to achieve complete and uniform filling of relatively large micro chambers. With centrifugal devices, these large micro chambers must often be orientated perpendicularly to the direction of centrifugal force and are usually bounded by materials with varying surface properties. On the other hand, the mixing characterization of two fluid by centrifugal microfluidic method has been also conducted. The multiphase flow analyses based on Eulerian-Eulerian approach have been conducted and the VOF method was used for ... 

    Ion Separation through a Y-Shaped CNT Membrane- A Molecular Dynamics Simulation

    , M.Sc. Thesis Sharif University of Technology Karimi, Sajjad (Author) ; Mousavi, Ali (Supervisor) ; Sadrhosseini, Hani (Supervisor)
    Abstract
    Nowadays, water desalination is a widely-used method for producing clean and fresh water. Recent researches in this area have mostly focused on Reverse Osmosis technology which is one of the most efficient technologies in water desalination. A new idea to increase the efficiency of a recently-designed reverse osmosis membrane called “Honeycomb Carbon Nanotube Membrane” is presented through molecular dynamics simulation. Although in this study only the inlet area of the honeycomb structure which is a Y-shaped entrance, is modeled and studied, but obviously, any improvement in the membrane inlet, equals better results at outlet which means a more efficient desalination process. Present thesis... 

    Simulation of Micro Swimmer in Fluid at Low Reynolds Number

    , M.Sc. Thesis Sharif University of Technology Haghnegahdar, Aslan (Author) ; Moosavi, Ali (Supervisor) ; Sadr Hosseini, Hani (Supervisor)
    Abstract
    In this study, two micro swimmers have been modeled using computational fluid dynamics and the motion specifications have been presented. The mechanisms can be used for different applications like drug delivery, monitoring, doing tasks in dangerous environments like robots and etc… . These moving mechanisms are inspired from a type of plankton named “cladoceran Podon Intermedius”, accordingly we have compared our results with data obtained by particle image velocimetry. For CFD simulation, an unstructured 2-dimensional mesh has been generated. Dynamic meshing has also been utilized in a meshing zone around the moving parts. Unsteady simulations were run for axisymmetric and plane symmetry... 

    Numerical Simulation of Displacement of the Fluid Phases in Porous Media

    , M.Sc. Thesis Sharif University of Technology Fathi Kazerooni, Hamed Reza (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Nowadays, oil has an important role in our life and most of its role can be seen on the transportation. Discovering and extraction of oil are very important to produce oil and receive it to costumer. When oil is discovered, the oil companies used to drill the ground to extract the oil but they can’t extract all of oil from its reservoir. So, researchers proposed to inject another fluid like water to the oil reservoir to extract oil. Oil is trapped in the porous media which has a lot of pores and some of them have a micro scale size and they contain oil. When water is injected to the reservoir it flows in this pore and interfaces with oil and they create a multiphase flow. The governing... 

    Fault Diagnosis of Crack Growth in Power Transmission Systems, using Neural Network

    , M.Sc. Thesis Sharif University of Technology Delavari, Mohammad Mohsen (Author) ; Selk Ghafari, Ali (Supervisor) ; Khayyat, Amir Ali Akbar ($item.subfieldsMap.e)
    Abstract
    Nowadays, industrial companies deal with a wide range of serious problems in the field of power transmission maintenance and also fault detection. A large amount of money and time is spent on these issues in order to solve them; consequently, there is an essential need for this subject. In this thesis, in order to tackle those major issues which were referred above, an artificial neural network is trained with only one hidden layer. Also, a suitable database for training an efficient neural network is needed. Thus, a one-stage gearbox system with appropriate degrees of freedom is used to set up referred database. In this system, a crack is imposed to a tooth of spur gear with different sizes... 

    Effects of Square Electrical Pulses on Forcing Silver Nanoparticles into Cancer Cells: a Simulation Study

    , M.Sc. Thesis Sharif University of Technology Mirshahi, Salim (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Sani, Mahdi (Co-Advisor)
    Abstract
    In recent decades, metal nanoparticles have been used in medicine for example in cancer treatment. There have always been debates on the nanoparticles specifications such as particle size, amount of surface charge and the particle material. Meanwhile, the study on selecting appropriate properties of nanoparticles for this purpose is very essential and expensive in medical science. In order to access the best efficiency and the least mortality of the patients in treatments, simulation studies can support the medical scientists. In this thesis, the goal is to study transferring nanoparticles as a drug or included drugs through created hypothetical micro-channels in cancerous cells membrane.... 

    Laboratory Evaluation of Dynamic Viscosity and Heat Conductivity of Functionalized Carbon Nanotube Nano Fluids in the Engine Oil and Modeling with the Neural Network

    , M.Sc. Thesis Sharif University of Technology Emami, Ali (Author) ; Moosavi, Ali (Supervisor) ; Akbari, Mohammad (Co-Advisor)
    Abstract
    In recent years, Rheological behavior and heat transfer of nanofluid studies have been increasing considerably and results show significant progress in this area. In this study we analyze the laboratory examination of the influence of parameters of volume fraction and temperature on thermal conductivity coefficient, dynamic viscosity of new and useful nanofluid carbon nanotube in engine oil. Most of fluid comparing to solid has lower thermal conductivity coefficient therefore solid particles increase thermal conductivity coefficient. On the other hand by adding particles, the dynamic viscosity of nanofluid also increases. Since nanoparticles have high volume ratio to surface (SSA) they have... 

    Design, Modeling and Control of a Delta Robot in Fine Machining Application

    , M.Sc. Thesis Sharif University of Technology Malekzadeh, Saeed (Author) ; Salarieh, Hassan (Supervisor) ; Selk Ghafari, Ali (Supervisor)
    Abstract
    In recent years, industrial robots have been greatly used as orienting devices in industry, especially in the automotive, shipbuilding and aerospace manufacturing industries. Industrial robots are gradually finding their niche in manufacturing, replacing less universal and more expensive CNC-machines. Application area of robots is constantly growing; they begin to be used for the assembly, pick-and-place operations, machining operations and etc. The use of robots for machining operations is growing because of their flexibility to perform a broad spectrum of tasks at a lower cost when compared with machine tools. Recently, parallel robots have attracted more and more researchers’ attention in... 

    Dynamic Analysis & Control of a Biomimetic Robotic Fish Employing the Bond Graph Approach

    , M.Sc. Thesis Sharif University of Technology Daryani Tabrizi, Kasra (Author) ; Selk Ghafari, Ali (Supervisor) ; Meghdari, Ali (Supervisor)
    Abstract
    In this thesis, a dynamic model of the biomimetic robotic fish with a flexible tail is developed. In this model, the oscillating frequency of the tail controls the forward velocity, and the body spline offset parameter controls the heading angle. The robotic fish were divided to two parts: a rigid body, and a flexible tail. The rigid body includes the head and the electrical and mechanical equipment. The bond graph model was developed and the numerical values were extracted from constructed robotic fish have also been hydrodynamically analyzed. Simulation results were quantitatively compared and verified with Matlab Simmechanics simulations. These simulations described the lateral movement... 

    Dynamic Trajectory Generation and Obstacle Avoidance for a Reconfigurable Spherical Robot

    , M.Sc. Thesis Sharif University of Technology Kananpour, Babak (Author) ; Ghaemi Osgouie, Kambiz (Supervisor) ; Salarieh, Hassan (Supervisor)
    Abstract
    Recent studies show that spherical shape robots have been widely developed by many robotic researchers. A spherical shape can be also benefited in keeping mechanical components and electronic circuits inside a compact volume. The shell can also perform rolling motions for going fast and smooth on flat area. The reconfigurable spherical robot can be configured into a form of two interconnected hemispheres with three legs equipped with three Omni-directional wheels. The conceptual design of the robot will be initially packed and deployed in a spherical configuration. The spherical construction offers ease in transportation and deployment; for example, a number of these robots can be packed and... 

    Design of the Coronary Stent Device to Improve Fluid Flow in Coagulated Vascular Regions

    , M.Sc. Thesis Sharif University of Technology Haghayegh Jahromi, Mohammad (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    The application of computational fluid dynamics (CFD) has been growing rapidly in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents and type of...