Loading...
Search for: operating-condition
0.014 seconds
Total 195 records

    Determination of available transfer capability with implication of cascading collapse uncertainty

    , Article IET Generation, Transmission and Distribution ; Vol. 8, issue. 4 , 2014 , p. 705-715 ; ISSN: 17518687 Salim, N. A ; Othman, M. M ; Serwan, M. S ; Fotuhi-Firuzabad, M ; Safdarian, A ; Musirin I ; Sharif University of Technology
    Abstract
    Available transfer capability (ATC) provides important information for power marketers and planning sectors in restructured power systems. The stochastic nature of power system behaviour, however, made ATC determination a difficult and complicated task. A stochastic framework has been established for ATC calculation with implication of uncertainties in transmission failures, hourly peak loads and system cascading collapse. The proposed ATC calculation framework is based on parametric bootstrap technique which enables generating random samples of system operating condition with uncertainty at a predefined confidence interval. The IEEE RTS-96 network is employed to demonstrate the... 

    Using sliding mode control to adjust drum level of a boiler unit with time varying parameters

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis ; Vol. 5 , 2010 , pp. 29-33 ; ISBN: 9780791849194 Moradi, H ; Bakhtiari-Nejad, F ; Saffar-Avval, M ; Alasty, A ; Sharif University of Technology
    Abstract
    Stable control of water level of drum is of great importance for economic operation of power plant steam generator systems. In this paper, a linear model of the boiler unit with time varying parameters is used for simulation. Two transfer functions between drum water level (output variable) and feed-water and steam mass rates (input variables) are considered. Variation of model parameters may be arisen from disturbances affecting water level of drum, model uncertainties and parameter mismatch due to the variant operating conditions. To achieve a perfect tracking of the desired drum water level, two sliding mode controllers are designed separately. Results show that the designed controllers... 

    Investigation into the capability of a modern decline curve analysis for gas condensate reservoirs

    , Article Scientia Iranica ; Vol. 18, issue. 3 C , June , 2011 , p. 491-501 ; ISSN: 10263098 Sadeghi Boogar, A ; Gerami, S ; Masihi, M ; Sharif University of Technology
    Abstract
    Techniques of production data analysis for single-phase oil and gas reservoirs have advanced significantly over the past few years. These techniques range from traditional (Arps and Fetkovich) to modern (for the variation of operating conditions at the wellbore). The application of these techniques for analysis of the production data of a gas condensate reservoir may not yield reliable answers due to the fact that the flow of fluid in gas condensate reservoirs is not single-phase. This paper presents the treatment of a modern method of production data analysis (single-phase flow) to analyze the production data of a gas condensate reservoir (two-phase flow). For this purpose, a single-phase... 

    Mathematical modelling of the methane conversion to heavier hydrocarbons in a plasma reactor

    , Article Petroleum Science and Technology ; Vol. 32, Issue. 19 , 2014 , Pages 2275-2282 ; ISSN: 10916466 Kazemeini, M ; Zare, M. H ; Fattahi, M ; Sharif University of Technology
    Abstract
    In this study, mathematical modeling of fixed-bed plasma reactor operated under isothermal condition was investigated. In this process, methane and acetylene were the inputted feed and ethane, ethylene, propylene, propane, i-butane, and n-butane were the output products. The amount of methane conversion obtained was 12.7% for the former feed, however, if pure methane was inputted this conversion rose to 13.8%. Furthermore, the plasma process enhanced the conversion as well as the selectivity toward the desired product and yield. In the present study, when methane and acetylene were fed at a molar ratio of CH4/C2H2 = 10 to the reactor, the selectivity of C2, C3, and C4 hydrocarbons was... 

    Extended quantum yield: A dimensionless factor including characteristics of light source, photocatalyst surface, and reaction kinetics in photocatalytic systems

    , Article Industrial and Engineering Chemistry Research ; Vol. 53, issue. 30 , July , 2014 , pp. 11973-11978 ; ISSN: 08885885 Shidpour, R ; Vossoughi, M ; Simchi, A. R ; Micklic, M ; Sharif University of Technology
    Abstract
    Quantum yield relations were extended by adding effective conditional parameters in photodegradation of organic pollutants such as intensity of light, wavelength of light, average distance from light source, concentrations of dye/pollutant and photocatalyst, and volume of reactor. The geometry of light source and thin film and particulate photocatalytic systems were considered in analysis. Extended quantum yield that is a dimensionless factor is applicable in various types of dye and photocatalyst. This extended quantum yield allowed us to classify photodegradation as reported by scientific groups, performed in various operational conditions in order to identify the degree of similarity... 

    Analyses of mass and heat transport interactions in a direct methanol fuel cell

    , Article International Journal of Hydrogen Energy ; Vol. 39, issue. 21 , July , 2014 , p. 11224-11240 ; ISSN: 03603199 Kalantari, H ; Baghalha, M ; Sharif University of Technology
    Abstract
    In this paper, a two-dimensional, two-phase, non-isothermal model is presented to predict the electrochemical, mass transfer and heat transfer behaviors in a direct methanol fuel cell (DMFC). Governing equations including the momentum, continuity, heat transfer, proton and electron transport, species transport for water, methanol, and all the gas species (carbon dioxide, methanol vapor, water vapor, oxygen, and nitrogen) and the auxiliary equations are coupled to studying the various phenomena in DMFC. The modeling results agree well with the four different experimental data in an extensive range of operation conditions. A parametric study is also performed to examine the effects of the cell... 

    Hydrogen, nitrogen and carbon dioxide production through chemical looping using iron-based oxygen carrier - A Green plant for H2 and N 2 production

    , Article International Journal of Hydrogen Energy ; Vol. 39, issue. 20 , 2014 , pp. 10380-10391 ; ISSN: 03603199 Edrisi, A ; Mansoori, Z ; Dabir, B ; Shahnazari, A ; Sharif University of Technology
    Abstract
    In order to simulate the performance of pure methane in chemical looping using iron-based oxygen carrier, simultaneously production of three pure streams of hydrogen, nitrogen and carbon dioxide has been investigated. For this purpose, proper operating conditions have been discussed for maximum production of hydrogen, complete consumption of oxygen of inlet air and complete combustion of methane. Professional software is used to simulate the chemical looping reactors and optimize their output streams. Results show that in this process each mole of methane fuel can produce 2.533, 2.65 and 0.99 mol of pure N 2, H2 and CO2, respectively which contributes 80.2% energy conversion of CH4 to H2.... 

    Optimal design and operation of a photovoltaic-electrolyser system using particle swarm optimisation

    , Article International Journal of Sustainable Energy ; 2014 ; ISSN: 14786451 Sayedin, F ; Maroufmashat, A ; Roshandel, R ; Khavas, S. S
    Abstract
    In this study, hydrogen generation is maximised by optimising the size and the operating conditions of an electrolyser (EL) directly connected to a photovoltaic (PV) module at different irradiance. Due to the variations of maximum power points of the PV module during a year and the complexity of the system, a nonlinear approach is considered. A mathematical model has been developed to determine the performance of the PV/EL system. The optimisation methodology presented here is based on the particle swarm optimisation algorithm. By this method, for the given number of PV modules, the optimal sizeand operating condition of a PV/EL system areachieved. The approach can be applied for different... 

    Dme direct synthesis from syngas in a large-scale three-phase slurry bubble column reactor: transient modeling

    , Article Chemical Engineering Communications ; Vol. 201, issue. 5 , Nov , 2014 , pp. 612-634 ; ISSN: 00986445 Papari, S ; Kazemeini, M ; Fattahi, M ; Fatahi, M ; Sharif University of Technology
    Abstract
    In this research, a new transient mathematical model based upon tanks-in-series configuration was developed to simulate the direct synthesis of dimethyl ether (DME) from syngas in a commercial-scale slurry bubble column reactor. A comparison between the simulation results and experimental data showed that the applied model might acceptably describe the behavior of the slurry reactor. Furthermore, simulation results in the heterogeneous bubble flow regime indicated that the proposed model with 10 tanks-in-series provided the optimum condition. Utilizing this transient model and considering catalyst deactivation, the effect of operating conditions on DME productivity and CO conversion were... 

    Modeling and process design of intraparticle adsorption in single-stage and multistage continuous stirred reactors: An analytical kinetics approach

    , Article Industrial and Engineering Chemistry Research ; Vol. 53, issue. 1 , 2014 , pp. 305-315 ; ISSN: 08885885 Outokesh, M ; Naderi, A ; Khanchi, A. R ; Karimi Sabet, J ; Sharif University of Technology
    Abstract
    Continuous adsorption in stirred reactors in the form of carbon in pulp (CIP) and resin in pulp (RIP) is an established process for the extraction of gold and uranium. Under the circumstance of intraparticle diffusion resistance, CIP and RIP have been accurately modeled by the Boyd's series (reversible adsorption) and shrinking core model (irreversible adsorption). The present study, in its first part, introduces an analytical formula that most closely approximates both models. Using such formula, the study addresses a basic algorithm for optimization of single-stage continuous adsorption systems through linking of the major process variables. Furthermore, this study is devoted to developing... 

    Optimization of uhmwpe/graphene nanocomposite processing using ziegler-natta catalytic system viaresponse surface methodology

    , Article Polymer - Plastics Technology and Engineering ; Vol. 53, Issue. 9 , June , 2014 , pp. 969-974 ; ISSN: 03602559 Shafiee, M ; Ramazani, S. A. A ; Sharif University of Technology
    Abstract
    Optimization of operational conditions for the preparation of Ultrahigh-molecular-weight polyethylene (UHMWPE)/Graphene nanocomposites with Ziegler-Natta catalyst was carried out via response surface methodology (RSM). This study deals with the optimization of process variables to optimize the productivity and molecular weight. A three-factor, three-level Box-Behnken design with temperature (X1), monomer pressure (X2), and [Al]/[Ti] molar ratio (X3) as the independent variables were selected for the study. The dependent variables were productivity and molecular weights of the final nanocomposites. It was developed by using the three parameters at three levels including 50, 60, and 70°C for... 

    Numerical study on water distribution in different layers of direct methanol fuel cells

    , Article Journal of the Electrochemical Society ; Vol. 161, issue. 8 , 2014 , pp. E3110-E3124 ; ISSN: 00134651 Kalantari, H ; Baghalha, M ; Sharif University of Technology
    Abstract
    In this paper, a two-dimensional, two-phase, isothermal model is presented to investigate the water transport characteristic and water distribution in a direct methanol fuel cell (DMFC) with emphasis on exploring the water distribution in different layers of DMFC. The liquid-gas two-phase mass transport in the porous anode and cathode is formulated based on multi-fluid model in porous media and water and methanol crossover through the membrane are considered with the effect of diffusion, electro-osmotic drag, and convection. The modeling results agree well with the three different experimental data in an extensive range of operation conditions. A parametric study is also performed to examine... 

    Chaos prediction in MEMS-NEMS resonators

    , Article International Journal of Engineering Science ; Vol. 82 , 2014 , pp. 74-83 ; ISSN: 00207225 Maani Miandoab, E ; Pishkenari, H. N ; Yousefi-Koma, A ; Tajaddodianfar, F ; Sharif University of Technology
    Abstract
    Different nonlinearities in micro-electro-mechanical resonators lead to various nonlinear behaviors such as chaotic motion which can affect the resonator performance. As a result, it is important to properly identify and analyze the chaotic regions in resonators. In this paper, a novel method is proposed for prediction of the chaos in the micro- and nano-electro-mechanical resonators. Based on the proposed method, first an accurate analytical solution for the dynamics behavior of the nano-resonators is derived using the multiple scales method up to the second order. The results obtained by this analytical solution are validated by comparing them with the numerical ones. Using the analytical... 

    Multi-objective optimization of direct coupling photovoltaic-electrolyzer systems using imperialist competitive algorithm

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 6A , November , 2014 Maroufmashat, A ; Sayedin, F ; Sattari, S ; Sharif University of Technology
    Abstract
    Photovoltaic-electrolyzer systems are one of the most promising alternatives for obtaining hydrogen from a renewable energy source. Determining size and the operational conditions are always a key issue while coupling directly renewable electricity sources to PEM electrolyzer. In this research, the multi objective optimization approach based on an imperialist competitive algorithm (ICA), which is employed to optimize the size and the operating conditions of a directly coupled photovoltaic (PV)-PEM electrolyzer. This allows the optimization of the system by considering two different objectives, including, minimization of energy transfer loss and maximization of hydrogen generation. Multi... 

    An imperialist competitive algorithm approach for multi-objective optimization of direct coupling photovoltaic-electrolyzer systems

    , Article International Journal of Hydrogen Energy ; Vol. 39, Issue 33 , 11 November , 2014 , pp. 18743-18757 ; ISSN: 03603199 Maroufmashat, A ; Sayedin, F ; Khavas, S. S
    Abstract
    In the context of sustainable clean hydrogen production pathways, photovoltaic-electrolyzer systems are one of the most promising alternatives for acquiring hydrogen from renewable energy sources. In fact, determining the optimal set of design and operating variables are always a key issue while coupling directly renewable electricity sources to PEM electrolyzers. Few previous studies have attempted to find the optimal size and operational condition of directly coupled photovoltaic-electrolyzer (PV/El) systems in order to maximize the hydrogen production or to minimize energy transfer loss between photovoltaic devices and the electrolyzer. Nevertheless an easy and efficient approach still... 

    Development of a structured monolithic support with a CNT washcoat for the naphtha HDS process

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Vol. 45, issue. 3 , May , 2014 , p. 887-895 Soghrati, E ; Kazemeini, M ; Rashidi, A. M ; Jozani, K. J ; Sharif University of Technology
    Abstract
    An acid treatment of the cordierite monolith followed by coating of the CNT onto it by means of catalytic decomposition of methane was performed. The resulting material utilized as the support for the CoMo catalyst. The characterization outcomes showed that the CNTs were distributed uniformly on the surface of the monolith leading to a high BET surface area and relatively good adhered mesoporous layer of CNTs. Moreover, the catalytic activity of the resulting catalysts determined in an HDS reaction of naphtha. It was concluded that the activity of the CoMo catalyst over the CNT coated monolithic support (FACNT) was higher than that of the CoMo deposited onto the acid-treated monolith and... 

    Two strategies for multi-objective optimisation of solid oxide fuel cell stacks

    , Article International Journal of Sustainable Energy ; Vol. 33, issue. 4 , 2014 , p. 854-868 Roshandel, R ; Behzadi Forough, A ; Sharif University of Technology
    Abstract
    This paper focuses on multi-objective optimisation (MOO) to optimise the planar solid oxide fuel cell (SOFC) stacks performance using a genetic algorithm. MOO problem does not have a single solution, but a complete Pareto curve, which involves the optional representation of possible compromise solutions. Here, two pairs of different objectives are considered as distinguished strategies. Optimisation of the first strategy predicts a maximum power output of 108.33 kW at a breakeven per-unit energy cost of 0.51 $/kWh and minimum breakeven per-unit energy cost of 0.30 $/kWh at a power of 42.18 kW. In the second strategy, maximum efficiency of 63.93%at a breakeven per-unit energy cost of 0.42... 

    Theoretical-experimental investigation of Co emission from an oil refinery incinerator

    , Article American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM ; Vol. 1C, issue , 2014 Darbandi, M ; Abrar, B ; Yazdi, M. K ; Zeinali, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this paper, we investigate the CO emission from an oil refinery gas incinerator both theoretically and experimentally. At the beginning of this research, our collected data from this incinerator showed that the CO contamination would be far exceeding the permissible environmental standards at the stack exhaust. Therefore, we decided to perform a combined theoretical-experimental study to find a reasonable solution to reduce the CO pollution suitably. Our theoretical study showed that a reliable solution would be to increase the incinerator operating temperature. However, we needed to collect some data from this incinerator to examine if our achieved analytical solution would work... 

    Experimental & numerical investigation of losses in centrifugal compressor components

    , Article Proceedings of the ASME Turbo Expo, San Antonio, Tx ; Volume 6 C , 2013 ; ISBN: 9780791855249 Doustmohammadi, A. A ; Hajilouybenisi, A ; Mojaddam, M ; Sharif University of Technology
    2013
    Abstract
    In this research an analytical model for performance prediction of centrifugal compressors is developed. The loss mechanisms are investigated in impeller, diffuser and volute separately for wide operating rotational speeds of the compressor. The contributions of compressor components in total entropy generation are further studied using different experimental correlations and methods. The results are verified using experimental test results, carried out at Sharif University of technology Turbocharger laboratory which has been designed to derive performance curves of turbocharger compressors. The test rig is equipped to measure static and stagnation pressures at inlet and outlet of each... 

    A validated numerical-experimental design methodology for a movable supersonic ejector compressor for waste-heat recovery

    , Article Journal of Thermal Science and Engineering Applications ; Volume 6, Issue 2 , Oct , 2014 ; 19485085 (ISSN) Alimohammadi, S ; Persoons, T ; Murray, D. B ; Tehrani, M. S ; Farhanieh, B ; Koehler, J ; Sharif University of Technology
    Web Portal ASME (American Society of Mechanical Engineers)  2014
    Abstract
    The aim of this paper is to develop the technical knowledge, especially the optimum geometries, for the design and manufacturing of a supersonic gas-gas ejector for a wasteheat driven vehicle cooling system. Although several studies have been performed to investigate the effects of geometrical configurations of gas-gas ejectors, a progressive design methodology of an ejector compressor for application to a vehicle cooling system has not yet been described. First, an analytical model for calculation of the ejector optimum geometry for a wide range of operating conditions is developed, using R134a as the working fluid with a rated cooling capacity of 2.5 kW. The maximum values of entrainment...