Loading...
Search for: operating-condition
0.014 seconds
Total 195 records

    Degradation Based Framework for Long-term Optimization of Energy Conversion Systems. Case Studies: Solid Oxide Fuel Cell Gas Turbine

    , Ph.D. Dissertation Sharif University of Technology Parhizkar, Tarannom (Author) ; Roshandel, Ramin (Supervisor)
    Abstract
    The energy systems efficiency is a great issue confront power plants professionals. Besides using high-tech components in power plants, plant operation optimization can significantly improve energy efficiency and economic performance, as efficiency of plant components generally depends on operating conditions. In addition, system preventive maintenance can reduce plant operation and failure costs, however it is also costly when done frequently. Therefore, optimizing operating conditions and preventive maintenance intervals can minimize the expected total cost of plant due to operation, failures and preventive maintenances. In recent years, the use of optimization models to determine plant... 

    Modeling and Analysis of Optimal Control and Condition Monitoring of Fuel Cell System Based on Performance History

    , M.Sc. Thesis Sharif University of Technology Parhizgar, Tarannom (Author) ; Roshandel, Ramin (Supervisor)
    Abstract
    The short life of Polymer Electrolyte Membrane (PEM) fuel cells is one of the critical criteria to their commercialization. A longer operation life time should be achieved to reach high reliability, low $/kWh cost and to use fuel cells as economical alternative energy systems.Therefore,diagnosing degradation mechanisms and the causes of power loss in fuel cell life time is of great importance. Operating conditions affect output power density and performance degradation. To achieve maximum power generation through fuel cell life time, a model is needed which is able to estimate power density and performance degradation simultaneously regarding to operating conditions. In present work, a... 

    Data-driven Nexus Analysis and Optimization of a Complex Thermo-gasdynamic Energy System and Implementation on an Old National Thermal Power plant in Operational Conditions

    , M.Sc. Thesis Sharif University of Technology Momeni Masuleh, Ghadir (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    The performance of the power plant decreases during its lifetime and deviates from its design and initial operation conditions; Maintenance issues, variety of operational patterns, market limitations and financial goals have been caused this situation. Knowing the appropriate actions and finding the optimal operation conditions of the power plant can support the system to restore its initial operational performance and bring it closer to its design condition. In this research, with historical data helps of a steam thermal power plant in Kermanshah, unsupervised machine learning techniques have been used to identify operational patterns, which lead to the identification of optimal operating... 

    Dye Removal from Textile Effluent Using Membrane Process

    , M.Sc. Thesis Sharif University of Technology Mohammadpour Mir, Mohammad Hossein (Author) ; Borghei, Mehdi (Supervisor)
    Abstract
    Textile industry is one of the biggest consumers of water in the world. Effluents of textile industry ordinarily have huge rate of dye compounds which are toxic and persistent in environment. In case which they did not treat and discharged in the environment, they can create cancer, poisoning and etc. Finding efficient, economic and fast method for treating of these effluents is an important factor on the management. Combination of ultrafiltration membrane and reverse osmosis processes, has taken into consideration as an efficient and fast method of treatment of textile effluents in recent years. One of the fundamental problems of this process is the high costs of operation and chemical... 

    Reliability Evaluation of Heat Recovery Steam Generator of Combined Cycle Thermal Power Plants

    , M.Sc. Thesis Sharif University of Technology Khaksar Haghani Dehkordi, Siamak (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Combined cycle power plants consist of three main sections, namely gas turbine, Heat Recovery Steam Generator (HRSG) and steam turbine. Occurring failure in HRSG causes the steam turbine trip, so the reliability assessment of HRSG has a great importance for forecasting the probability of occurring failure and also reducing failure causes. In this project, the reliability of HRSG considering effects of aging phenomenon, maintenance and, environmental and operational conditions on reliability is modeled. Afterward a method to estimate the model parameters is introduced. Using present method, failure data of six HRSGs of a plant each with a capacity of 50 MW is analyzed and the model parameters... 

    Controlling the Operational Conditions of a Greenhouse

    , M.Sc. Thesis Sharif University of Technology Fallah Ramezani, Saeed (Author) ; Shahrokhi, Mohammad (Supervisor) ; Vafa, Ehsan (Supervisor)
    Abstract
    Researchers have paid more attention to greenhouse cultivation, due to the exacerbation of food and water crisis. Higher production with lower cost could be achieved through greenhouse climate control (temperature, humidity, carbon dioxide concentration). However, greenhouse climate control is a challenging task, because greenhouses have highly interactive nonlinear dynamics and model uncertainties and are subject to input saturation. In light of the fact that Iran is a country with a warm and arid climate, tunnel greenhouses equipped with evaporative cooling system are very common in Iran. Accordingly, this type of greenhouse is considered for modelling, simulation and control in this... 

    CFD Simulation of a Polymeric Solution Flow in Doctor Blade Film Coating Process for Pruducing Desirable Thin Film

    , M.Sc. Thesis Sharif University of Technology Mollataheri, Mehdi (Author) ; Mohammadi, Ali Asghar (Supervisor) ; Musavi, Abbas (Supervisor)
    Abstract
    Lately, some investigators of polymer engineering group are working to do continuous polymer solution casting process, rather than batch process for flat sheet membrane production. For this, they use a doctor blade system but, they faced some problems during coating process. From experimental observations of the studied system, some inappropriate vorticities were seen. That’s why the system forms a non-uniform film of the solution. Air bubbling occurs at system exit which is undesirable as well. In this study simulation and optimization has been done for forming thin film in doctor blade system. COMSOL Multiphysics 4.3b was used in purpose of simulating which works on numerical finite... 

    Experimental Investigation of Effective Parameters on Performance of Micro-sized Bio-electrochemical Systems

    , M.Sc. Thesis Sharif University of Technology Mehran, Narges (Author) ; Yaghmaei, Soheila (Supervisor)
    Abstract
    This study is a report on the fabrication of a novel single-chamber micro-structure microbial fuel cell consisting of spiral anode chamber. A 3×3 cm plexiglass plate with 1 mm thickness was used as main body. A spiral microchannel (1 mm in width and 226 mm in length) was cut using a laser beam as an anodic compartment. Two types of microbial fuel cells with the same anode electrode (stainless steel mesh) and different cathode electrodes (stainless steel mesh and carbon cloth) were constructed in order to investigate the effect of cathode electrode material on microbial fuel cell performance. In both batch and continuous mode, higher power density was obtained by microbial fuel cell with... 

    Integrated Safe Design of Industrial Processes under Uncertainty

    , M.Sc. Thesis Sharif University of Technology Meghdari, Mojtaba (Author) ; Rashtchian, Davood (Supervisor) ; Sharifzadeh, Monireh (Supervisor)
    Abstract
    Chemical industries are associated with hazardous chemicals and extreme operating conditions. Unsafe events can incur dramatic costs in terms of the loss of life, financial penalties and damages to the environment. Therefore, design of industrial processes which can be operated safely over a wide range of operating conditions is vital. Nevertheless, operation of industrial processes is a strong function of their design. If the process is initially poorly designed, ensuring its safe operation, if not impossible, would require costly modifications at the operational phases. This observation is due to the fact that process design decisions (e.g. design of process equipment) often have a... 

    , M.Sc. Thesis Sharif University of Technology (Author) ; Farhadi, Fathollah (Supervisor)
    Abstract
    The aim of this project is Industrial Solvents (White Spirit) producing in Tehran Refinery. For this manner “Wild Naphtha” from Gasoil Hydrotreater and Kerosene Hydrotreater Units was chosen as feed stock for solvents preparation. In addition, Pentane Recovery Column is selected for Simulation and Optimization based on Wild Naphtha. As a Result, Abadan White Spirit 402 and 410 has been produced and a side stream which is full of Aromatic is obtained. Simultaneously, Tray Hydraulics and Solvents production in different cases (Various Pressure and different Split Ratio of Feed Stock) are evaluated, so optimum Tower process conditions such as pressure, Temperature and Split Ratio of Feed Stock... 

    CFD Modeling of Fixed Bed Reactor for Direct Synthesis of DME from Syngas and Carbon Dioxide

    , M.Sc. Thesis Sharif University of Technology Moradi, Fazel (Author) ; Kazemeini, Mohammad (Supervisor)
    Abstract
    Today, the global environmental restrictions as well as; energy problems have directed researchers toward developing ideas of producing a clean liquid fuel from coal or natural gas as a major research topic. In this regard, a special attention is paid to the dimethyl ether (DME) as a clean material containing 34.8% oxygen possessing enough positive potential to replace the diesel and LPG fuels. One of the most economic routes for producing the DME is known to be the direct conversion of the synthesis gases and carbon dioxide first to the methanol and then its dehydration to the DME. Moreover, the DME is not limited to a particular country or resource area since small reservoirs of natural... 

    Simulation and Estimation of Power Generation in Natural Gas Network by Micro Turboexpanders

    , M.Sc. Thesis Sharif University of Technology Hejazi, Bijan (Author) ; Farhadi, Fatolah (Supervisor)
    Abstract
    This thesis studies the economic feasibility of replacing a throttling valve with an expansion turbine in a city gate station for the purpose of distributed electricity generation through exergy recovery from pressurized natural gas. Conventionally, high pressure natural gas stream enters a pressure reduction station with its physical exergy completely destroyed in an irreversible Joule-Thompson effect of a throttling valve. To avoid hydrate formation at the outlet of the turboexpander, the inlet stream should be preheated. Although pressure reduction stations are inherently subject to seasonal fluctuations of inlet natural gas pressure and flow rate, the preheating temperature should be... 

    Determination of available transfer capability with implication of cascading collapse uncertainty

    , Article IET Generation, Transmission and Distribution ; Vol. 8, issue. 4 , 2014 , p. 705-715 ; ISSN: 17518687 Salim, N. A ; Othman, M. M ; Serwan, M. S ; Fotuhi-Firuzabad, M ; Safdarian, A ; Musirin I ; Sharif University of Technology
    Abstract
    Available transfer capability (ATC) provides important information for power marketers and planning sectors in restructured power systems. The stochastic nature of power system behaviour, however, made ATC determination a difficult and complicated task. A stochastic framework has been established for ATC calculation with implication of uncertainties in transmission failures, hourly peak loads and system cascading collapse. The proposed ATC calculation framework is based on parametric bootstrap technique which enables generating random samples of system operating condition with uncertainty at a predefined confidence interval. The IEEE RTS-96 network is employed to demonstrate the... 

    Using sliding mode control to adjust drum level of a boiler unit with time varying parameters

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis ; Vol. 5 , 2010 , pp. 29-33 ; ISBN: 9780791849194 Moradi, H ; Bakhtiari-Nejad, F ; Saffar-Avval, M ; Alasty, A ; Sharif University of Technology
    Abstract
    Stable control of water level of drum is of great importance for economic operation of power plant steam generator systems. In this paper, a linear model of the boiler unit with time varying parameters is used for simulation. Two transfer functions between drum water level (output variable) and feed-water and steam mass rates (input variables) are considered. Variation of model parameters may be arisen from disturbances affecting water level of drum, model uncertainties and parameter mismatch due to the variant operating conditions. To achieve a perfect tracking of the desired drum water level, two sliding mode controllers are designed separately. Results show that the designed controllers... 

    Investigation into the capability of a modern decline curve analysis for gas condensate reservoirs

    , Article Scientia Iranica ; Vol. 18, issue. 3 C , June , 2011 , p. 491-501 ; ISSN: 10263098 Sadeghi Boogar, A ; Gerami, S ; Masihi, M ; Sharif University of Technology
    Abstract
    Techniques of production data analysis for single-phase oil and gas reservoirs have advanced significantly over the past few years. These techniques range from traditional (Arps and Fetkovich) to modern (for the variation of operating conditions at the wellbore). The application of these techniques for analysis of the production data of a gas condensate reservoir may not yield reliable answers due to the fact that the flow of fluid in gas condensate reservoirs is not single-phase. This paper presents the treatment of a modern method of production data analysis (single-phase flow) to analyze the production data of a gas condensate reservoir (two-phase flow). For this purpose, a single-phase... 

    Mathematical modelling of the methane conversion to heavier hydrocarbons in a plasma reactor

    , Article Petroleum Science and Technology ; Vol. 32, Issue. 19 , 2014 , Pages 2275-2282 ; ISSN: 10916466 Kazemeini, M ; Zare, M. H ; Fattahi, M ; Sharif University of Technology
    Abstract
    In this study, mathematical modeling of fixed-bed plasma reactor operated under isothermal condition was investigated. In this process, methane and acetylene were the inputted feed and ethane, ethylene, propylene, propane, i-butane, and n-butane were the output products. The amount of methane conversion obtained was 12.7% for the former feed, however, if pure methane was inputted this conversion rose to 13.8%. Furthermore, the plasma process enhanced the conversion as well as the selectivity toward the desired product and yield. In the present study, when methane and acetylene were fed at a molar ratio of CH4/C2H2 = 10 to the reactor, the selectivity of C2, C3, and C4 hydrocarbons was... 

    Extended quantum yield: A dimensionless factor including characteristics of light source, photocatalyst surface, and reaction kinetics in photocatalytic systems

    , Article Industrial and Engineering Chemistry Research ; Vol. 53, issue. 30 , July , 2014 , pp. 11973-11978 ; ISSN: 08885885 Shidpour, R ; Vossoughi, M ; Simchi, A. R ; Micklic, M ; Sharif University of Technology
    Abstract
    Quantum yield relations were extended by adding effective conditional parameters in photodegradation of organic pollutants such as intensity of light, wavelength of light, average distance from light source, concentrations of dye/pollutant and photocatalyst, and volume of reactor. The geometry of light source and thin film and particulate photocatalytic systems were considered in analysis. Extended quantum yield that is a dimensionless factor is applicable in various types of dye and photocatalyst. This extended quantum yield allowed us to classify photodegradation as reported by scientific groups, performed in various operational conditions in order to identify the degree of similarity... 

    Analyses of mass and heat transport interactions in a direct methanol fuel cell

    , Article International Journal of Hydrogen Energy ; Vol. 39, issue. 21 , July , 2014 , p. 11224-11240 ; ISSN: 03603199 Kalantari, H ; Baghalha, M ; Sharif University of Technology
    Abstract
    In this paper, a two-dimensional, two-phase, non-isothermal model is presented to predict the electrochemical, mass transfer and heat transfer behaviors in a direct methanol fuel cell (DMFC). Governing equations including the momentum, continuity, heat transfer, proton and electron transport, species transport for water, methanol, and all the gas species (carbon dioxide, methanol vapor, water vapor, oxygen, and nitrogen) and the auxiliary equations are coupled to studying the various phenomena in DMFC. The modeling results agree well with the four different experimental data in an extensive range of operation conditions. A parametric study is also performed to examine the effects of the cell... 

    Hydrogen, nitrogen and carbon dioxide production through chemical looping using iron-based oxygen carrier - A Green plant for H2 and N 2 production

    , Article International Journal of Hydrogen Energy ; Vol. 39, issue. 20 , 2014 , pp. 10380-10391 ; ISSN: 03603199 Edrisi, A ; Mansoori, Z ; Dabir, B ; Shahnazari, A ; Sharif University of Technology
    Abstract
    In order to simulate the performance of pure methane in chemical looping using iron-based oxygen carrier, simultaneously production of three pure streams of hydrogen, nitrogen and carbon dioxide has been investigated. For this purpose, proper operating conditions have been discussed for maximum production of hydrogen, complete consumption of oxygen of inlet air and complete combustion of methane. Professional software is used to simulate the chemical looping reactors and optimize their output streams. Results show that in this process each mole of methane fuel can produce 2.533, 2.65 and 0.99 mol of pure N 2, H2 and CO2, respectively which contributes 80.2% energy conversion of CH4 to H2.... 

    Optimal design and operation of a photovoltaic-electrolyser system using particle swarm optimisation

    , Article International Journal of Sustainable Energy ; 2014 ; ISSN: 14786451 Sayedin, F ; Maroufmashat, A ; Roshandel, R ; Khavas, S. S
    Abstract
    In this study, hydrogen generation is maximised by optimising the size and the operating conditions of an electrolyser (EL) directly connected to a photovoltaic (PV) module at different irradiance. Due to the variations of maximum power points of the PV module during a year and the complexity of the system, a nonlinear approach is considered. A mathematical model has been developed to determine the performance of the PV/EL system. The optimisation methodology presented here is based on the particle swarm optimisation algorithm. By this method, for the given number of PV modules, the optimal sizeand operating condition of a PV/EL system areachieved. The approach can be applied for different...