Loading...
Search for: parametric-study
0.01 seconds
Total 103 records

    Experimental and numerical evaluation of the mechanical characteristics of semi-rigid saddle connections

    , Article Structural Design of Tall and Special Buildings ; Volume 31, Issue 7 , 2022 ; 15417794 (ISSN) Moghaddam, H ; Sadrara, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    Saddle connections are semi-rigid connections that are widely used in Iran. Many existing buildings contain this type of connection. The present study conducted full-scale experiments and used extensive numerical modeling to study the mechanical characteristics of saddle connections. The mechanical characteristics examined were the moment-transfer mechanism, initial stiffness, yield moment, maximum moment, and fracture rotation. The configuration and dimensions of the experimental and numerical specimens were chosen to be similar to those of saddle connections in existing buildings. A parametric study was conducted to determine the factors affecting the mechanical characteristics of these... 

    Estimation of the compressive strength of green concretes containing rice husk ash: a comparison of different machine learning approaches

    , Article European Journal of Environmental and Civil Engineering ; 2022 ; 19648189 (ISSN) Tavana Amlashi, A ; Mohammadi Golafshani, E ; Ebrahimi, S. A ; Behnood, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    To mitigate the environmental issues related to the utilisation of ordinary portland cement (OPC) in concrete mixtures, attempts have been carried out to find alternative binders such as rice husk ash (RHA) as replacements for OPC. This study contributes to moving from the traditional laboratory-based methods for the determination of compressive strength (CS) towards machine learning-based approaches by developing three accurate models (i.e. artificial neural network (ANN), multivariate adaptive regression spline (MARS) and M5P model tree) for the estimation of the CS of concretes containing RHA. For this purpose, the models were developed employing 909 data records collected through... 

    Micro-plasma actuator mechanisms in interaction with fluid flow for wind energy applications: operational parameters

    , Article Engineering with Computers ; 2022 ; 01770667 (ISSN) Omidi, J ; Mazaheri, K ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Plasma actuator is a flow control device which may be used to improve the performance of wind turbine blades at low airspeeds. One of the most robust numerical models to simulate the interaction of the plasma actuator with the fluid flow is the electrostatic model. This model is improved by the authors. Due to the high cost of performing experimental optimization, the optimization of plasma actuators may be investigated by this numerical model. To optimize the aerodynamic performance of a Delft University (DU) wind turbine airfoil in a full stall condition, we used the operational parameters (voltage, frequency and the waveform) applied to the plasma actuator as the main design variables. We... 

    Investigation of the effects of geometrical parameters, eccentricity and perforated fins on natural convection heat transfer in a finned horizontal annulus using three dimensional lattice Boltzmann flux solver

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 32, Issue 1 , 2022 , Pages 283-312 ; 09615539 (ISSN) Ashouri, M ; Zarei, M. M ; Moosavi, A ; Sharif University of Technology
    Emerald Publishing  2022
    Abstract
    Purpose: The purpose of this paper is to investigate the effects of geometrical parameters, eccentricity and perforated fins on natural convection heat transfer in a finned horizontal annulus using three-dimensional lattice Boltzmann flux solver. Design/methodology/approach: Three-dimensional lattice Boltzmann flux solver is used in the present study for simulating conjugate heat transfer within an annulus. D3Q15 and D3Q7 models are used to solve the fluid flow and temperature field, respectively. The finite volume method is used to discretize mass, momentum and energy equations. The Chapman–Enskog expansion analysis is used to establish the connection between the lattice Boltzmann equation... 

    Large deformation finite element modeling of rubble mound breakwater built on soft seabed using coupled eulerian–lagrangian method

    , Article Indian Geotechnical Journal ; Volume 51, Issue 2 , 2021 , Pages 315-328 ; 09719555 (ISSN) Masoudi, S ; Shahir, H ; Pak, A ; Sharif University of Technology
    Springer  2021
    Abstract
    For the design of rubble mound breakwaters on soft soil, it is essential to predict the behavior of soft soil and large deformations phenomena occurring in the course of construction of the rubble mound breakwater. Large deformations in various problems can be well simulated using the coupled Eulerian–Lagrangian (CEL) method. In this study, the CEL method has been used to simulate the rubble mounds construction on soft soil and predict the resulting settlements. To validate the numerical model, the results of three experiments conducted in the physical modeling laboratory at Kharazmi University were used. Also, two case studies of real rubble mound breakwaters constructed on soft seabeds... 

    Numerical study of stiff diaphragm walls used to improve the performance of rocking foundation systems

    , Article Journal of Earthquake Engineering ; Volume 25, Issue 13 , 2021 , Pages 2628-2650 ; 13632469 (ISSN) Sadjadi, M ; Fadaee, M ; Ghannad, M. A ; Jahankhah, H ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    This research explores the effectiveness of the use of stiff diaphragm walls next to a rocking foundation through numerical simulation. This improvement technique is used as a means to increase in subsoil peripheral confinement and reduce rocking-induced settlement. The numerical model was verified by the centrifuge test of rocking shallow foundations on clay under cyclic loading. A parametric study was conducted to explore the effect of three stiff wall shapes on the performance of a rocking system. The general conclusion of the parametric investigation is that the use of stiff diaphragm walls reduced the sinking-dominated settlement response of the rocking system. © 2019 Taylor & Francis... 

    A numerical investigation on natural convection heat transfer in annular-finned concentric horizontal annulus using nanofluids: a parametric study

    , Article Heat Transfer Engineering ; Volume 42, Issue 22 , 2021 , Pages 1926-1948 ; 01457632 (ISSN) Ashouri, M ; Zarei, M. M ; Hakkaki Fard, A ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Natural convection heat transfer in a concentric horizontal annulus with annular fins is numerically studied. Due to the low thermal conductivity of water, CuO-water and Al2O3-water nanofluids were used as heat transfer fluids. The effect of three different parameters, including fin spacing, fin eccentricity, and fin thickness at different fin diameters and Rayleigh number range of 104 to 9 (Formula presented.) 105, were studied. The obtained results revealed that Al2O3-water nanofluid has the highest heat transfer rate. The calculated heat transfer rates for Al2O3-water nanofluid for Rayleigh numbers of 9 (Formula presented.) 105, 105, and 104 were respectively up to 12.1%, 26.2%, and 31.6%... 

    A numerical investigation on natural convection heat transfer in annular-finned concentric horizontal annulus using nanofluids: a parametric study

    , Article Heat Transfer Engineering ; 2020 Ashouri, M ; Zarei, M. M ; Hakkaki Fard, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Natural convection heat transfer in a concentric horizontal annulus with annular fins is numerically studied. Due to the low thermal conductivity of water, CuO-water and Al2O3-water nanofluids were used as heat transfer fluids. The effect of three different parameters, including fin spacing, fin eccentricity, and fin thickness at different fin diameters and Rayleigh number range of 104 to 9 (Formula presented.) 105, were studied. The obtained results revealed that Al2O3-water nanofluid has the highest heat transfer rate. The calculated heat transfer rates for Al2O3-water nanofluid for Rayleigh numbers of 9 (Formula presented.) 105, 105, and 104 were respectively up to 12.1%, 26.2%, and 31.6%... 

    Numerical investigation of a portable incinerator: A parametric study

    , Article Processes ; Volume 8, Issue 8 , 2020 Pour, M. S ; Hakkaki Fard, A ; Firoozabadi, B ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    The application of incinerators for the municipal solid waste (MSW) is growing due to the ability of such instruments to produce energy and, more specifically, reduce waste volume. In this paper, a numerical simulation of the combustion process with the help of the computational fluid dynamics (CFD) inside a portable (mobile) incinerator has been proposed. Such work is done to investigate the most critical parameters for a reliable design of a domestic portable incinerator, which is suitable for the Iranian food and waste culture. An old design of a simple incinerator has been used to apply the natural gas (NG), one of the available cheap fossil fuels in Iran. After that, the waste height,... 

    Computational predictions for estimating the maximum deflection of reinforced concrete panels subjected to the blast load

    , Article International Journal of Impact Engineering ; Volume 139 , 2020 Shishegaran, A ; Khalili, M. R ; Karami, B ; Rabczuk, T ; Shishegaran, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    We investigate the resistance of reinforced concrete panels (RCPs) due to explosive loading using nonlinear finite element analysis and surrogate models. Therefore, gene expression programming model (GEP), multiple linear regression (MLR), multiple Ln equation regression (MLnER), and their combination are used to predict the maximum deflection of RCPs. The maximum positive and negative errors, mean of absolute percentage error (MAPE), and statistical parameters such as the coefficient of determination, root mean square error (RMSE). Normalized square error (NMSE), and fractional bias are utilized to evaluate and compare the performance of the models. We also present a novel statistical table... 

    Simulation and performance improvement of cryogenic distillation column, using enhanced predictive Peng–Robinson equation of state

    , Article Fluid Phase Equilibria ; Volume 489 , 2019 , Pages 117-130 ; 03783812 (ISSN) Ardeshir Larijani, M ; Bayat, M ; Afshin, H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, a cryogenic distillation column has been designed and simulated via a computer code based on the theta method of convergence. The required thermodynamic properties are determined from the enhanced predictive Peng-Robinson (E-PPR 78) equation of state which has a good accuracy in predicting the corresponding thermodynamic properties of natural gas components. The combined code of distillation column/equation of state has been verified with that of another study. In the present study, the results are achieved by the constant molar over-flow and inclusion of energy equations assumptions. In order to have more accuracy in the results, the energy equations were considered in the... 

    Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery

    , Article Renewable Energy ; Volume 135 , 2019 , Pages 66-87 ; 09601481 (ISSN) Ebadollahi, M ; Rostamzadeh, H ; Zamani Pedram, M ; Ghaebi, H ; Amidpour, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Multigeneration systems (MGSs) driven by renewable sources are proved as cutting-edge technologies for multiple productions purposes to curb greenhouse gas emissions. With this regard, a novel geothermal-based MGS is proposed to produce multiple commodities of cooling, heating, power, and hydrogen, simultaneously, using liquefied natural gas (LNG) as cold energy recovery. The system is composed of an organic Rankine cycle (ORC), an ejector refrigeration cycle (ERC), an LNG power generation system, and a proton exchange membrane (PEM) electrolyzer system. To demonstrate the feasibility of the proposed MGS, energy, exergy, and exergoeconomic analysis are employed as the most effective tools... 

    Behavior of polymer concrete beam/pile confined with CFRP sleeves

    , Article Mechanics of Advanced Materials and Structures ; Volume 26, Issue 4 , 2019 , Pages 333-340 ; 15376494 (ISSN) Toufigh, V ; Toufigh, V ; Saadatmanesh, H ; Ahmari, S ; Kabiri, E ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    This research investigates the flexural behavior of a polymer concrete beam/pile encased with carbon fiber sleeve. The mechanical properties of carbon fiber sleeves in tension and cement and polymer concrete in compression were determined. Polymer concrete beams were tested in flexure to determine the bending moment capacity. Then, the test results were compared to the theoretical model results. Finally, a parametric study was conducted to determine the influence of beam/pile parameters on the capacity of the element. Based on the investigation, carbon fiber sleeve filled with polymer concrete exhibits outstanding structural performance including ductility and bending capacity  

    Numerical investigation of stability of deep excavations supported by soil-nailing method

    , Article Geomechanics and Geoengineering ; 2019 ; 17486025 (ISSN) Pak, A ; Maleki, J ; Aghakhani, N ; Yousefi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Deep excavation in urban areas can cause instability problems due to significant settlement at the ground surface and large movements at the excavation facing walls. One of the most popular methods used to stabilise these excavations is utilising soil-nailing method. This method has also been widely used to stabilise natural slopes and earth retaining structures. Because of the complexity involved in the mechanism of this stabilising system due to interacting effects of the soil, nails, grout and shotcrete, numerical modelling with high accuracy should be used to analyse the behaviour of the soil-nailed walls. Considering all aspects of soil-structure interaction in the present research, a... 

    Investigation of effective parameters on the performance of the helium liquefaction cycle

    , Article International Journal of Heat and Technology ; Volume 37, Issue 4 , 2019 , Pages 1009-1018 ; 03928764 (ISSN) Larijani, M. A ; Eslami, M ; Afshin, H ; Sharif University of Technology
    International Information and Engineering Technology Association  2019
    Abstract
    Due to its unique properties, helium has wide application in different industries and scientific fields, which has turned it into a strategic material. Helium liquefaction plants include wide temperature range from 300 k to 4.2 k, so these plants have high energy consumption. A lot of studies have done to optimize the operation of these cycles. In this research, an exergy analysis is performed for a liquid helium production plant. The optimal performance of 3 and 4 stage cycles is extracted using parametric study and the results are compared with those of Collins dual-expander cycle. The results show that by increasing the number of cooling stages, not only the compressor optimum discharge... 

    Investigation of effective parameters on the performance of the helium liquefaction cycle

    , Article International Journal of Heat and Technology ; Volume 37, Issue 4 , 2019 , Pages 1009-1018 ; 03928764 (ISSN) Larijani, M. A ; Eslami, M ; Afshin, H ; Sharif University of Technology
    International Information and Engineering Technology Association  2019
    Abstract
    Due to its unique properties, helium has wide application in different industries and scientific fields, which has turned it into a strategic material. Helium liquefaction plants include wide temperature range from 300 k to 4.2 k, so these plants have high energy consumption. A lot of studies have done to optimize the operation of these cycles. In this research, an exergy analysis is performed for a liquid helium production plant. The optimal performance of 3 and 4 stage cycles is extracted using parametric study and the results are compared with those of Collins dual-expander cycle. The results show that by increasing the number of cooling stages, not only the compressor optimum discharge... 

    Numerical investigation of stability of deep excavations supported by soil-nailing method

    , Article Geomechanics and Geoengineering ; 2019 ; 17486025 (ISSN) Pak, A ; Maleki, J ; Aghakhani, N ; Yousefi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Deep excavation in urban areas can cause instability problems due to significant settlement at the ground surface and large movements at the excavation facing walls. One of the most popular methods used to stabilise these excavations is utilising soil-nailing method. This method has also been widely used to stabilise natural slopes and earth retaining structures. Because of the complexity involved in the mechanism of this stabilising system due to interacting effects of the soil, nails, grout and shotcrete, numerical modelling with high accuracy should be used to analyse the behaviour of the soil-nailed walls. Considering all aspects of soil-structure interaction in the present research, a... 

    A novel multigeneration system driven by a hybrid biogas-geothermal heat source, Part I: Thermodynamic modeling

    , Article Energy Conversion and Management ; Volume 177 , 2018 , Pages 535-562 ; 01968904 (ISSN) Rostamzadeh, H ; Ghavami Gargari, S ; Shekari Namin, A ; Ghaebi, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Hybrid renewable energy heat sources provide more sustainable energy resources with high maintenance for high-efficient power plants. Multigeneration systems driven by a hybrid renewable source are proved as cutting-edge technologies in recent studies. In this study, a novel multigeneration system driven by a hybrid biogas-geothermal heat source is proposed and simulated. To demonstrate the feasibility of the proposed multigeneration system, first and second laws analysis are employed as the most effective tools for performance assessment of the systems. It is found that the proposed multigeneration system can produce overall heating capacity, overall cooling capacity, net output power,... 

    Shear behavior of ultra-high performance concrete

    , Article Construction and Building Materials ; Volume 183 , 2018 , Pages 554-564 ; 09500618 (ISSN) Pourbaba, M ; Joghataie, A ; Mirmiran, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The application of ultra-high performance concrete (UHPC) as an alternative to conventional/normal concrete (NC) has grown rapidly in recent years. However, there is limited knowledge on its shear behavior, which is essential for developing design guidelines for structural applications. A detailed parametric study was conducted on 38 beam specimens, half of which were made of UHPC and the other half made of NC. To ensure applicability of findings, two types of UHPC mixes were used, a proprietary and a generic mix. Eighteen of the beams were prepared and tested in Tabriz, Iran, while the other 20 were made and tested in Miami, FL. Test parameters included type of concrete (UHPC and NC), shear... 

    Local and global buckling condition of all-steel buckling restrained braces

    , Article Steel and Composite Structures ; Volume 23, Issue 2 , 2017 , Pages 217-228 ; 12299367 (ISSN) Mirtaheri, S. M ; Nazeryan, M ; Bahrani, M. K ; Nooralizadeh, A ; Montazerian, L ; Naserifard, M ; Sharif University of Technology
    Techno Press  2017
    Abstract
    Braces are one of the retrofitting systems of structure under earthquake loading. Buckling restrained braces (BRBs) are one of the very efficient braces for lateral loads. One of the key needs for a desirable and acceptable behavior of buckling-restraining brace members under intensive loading is that it prevents total buckling until the bracing member tolerates enough plastic deformation and ductility. This paper presents the results of a set of analysis by finite element method on buckling restrained braces in which the filler materials within the restraining member have been removed. These braces contain core as the conventional BRBs, but they have a different buckling restrained system....