Loading...
Search for: pathophysiological
0.007 seconds
Total 56 records

    Possible role for growth hormone in suppressing acylated ghrelin and hunger ratings during and after intermittent exercise of different intensities in obese individuals

    , Article Acta Medica Iranica ; Vol. 52, Issue. 1 , 2014 , pp. 29-37 ; ISSN: 1735-9694 Gholipour, M ; Kordi, M. R ; Taghikhani, M ; Ravasi, A. A ; Gaeini, A. A ; Tabrizi, A ; Sharif University of Technology
    Abstract
    Body weight is influenced by both food intake and energy expenditure. Acylated ghrelin enhances appetite, and its circulating level is suppressed by Growth Hormone. Data on the acylated ghrelin responses to exercise of different intensities in obese individuals are currently not available. This study examined the effects of an intermittent exercise protocol on acylated ghrelin levels and hunger ratings in obese people. Nine inactive male ran on the treadmill at 0900 with progressive intensities of 50, 60, 70, and 80% of VO2max for 10, 10, 5, and 2 min respectively. Blood samples were collected before the exercise at 0845 (-15 min as the resting values), after each workload (10, 23, 31, and... 

    Switching kalman filter based methods for apnea bradycardia detection from ECG signals

    , Article Physiological Measurement ; Volume 36, Issue 9 , 2015 , Pages 1763-1783 ; 09673334 (ISSN) Ghahjaverestan, N. M ; Shamsollahi, M. B ; Ge, D ; Hernandez, A. I ; Sharif University of Technology
    Abstract
    Apnea bradycardia (AB) is an outcome of apnea occurrence in preterm infants and is an observable phenomenon in cardiovascular signals. Early detection of apnea in infants under monitoring is a critical challenge for the early intervention of nurses. In this paper, we introduce two switching Kalman filter (SKF) based methods for AB detection using electrocardiogram (ECG) signal. The first SKF model uses McSharry's ECG dynamical model integrated in two Kalman filter (KF) models trained for normal and AB intervals. Whereas the second SKF model is established by using only the RR sequence extracted from ECG and two AR models to be fitted in normal and AB intervals. In both SKF approaches, a... 

    Interpolation of orientation distribution functions in diffusion weighted imaging using multi-tensor model

    , Article Journal of Neuroscience Methods ; Volume 253 , 2015 , Pages 28-37 ; 01650270 (ISSN) Afzali, M ; Fatemizadeh, E ; Soltanian Zadeh, H ; Sharif University of Technology
    Abstract
    Background: Diffusion weighted imaging (DWI) is a non-invasive method for investigating the brain white matter structure and can be used to evaluate fiber bundles. However, due to practical constraints, DWI data acquired in clinics are low resolution. New method: This paper proposes a method for interpolation of orientation distribution functions (ODFs). To this end, fuzzy clustering is applied to segment ODFs based on the principal diffusion directions (PDDs). Next, a cluster is modeled by a tensor so that an ODF is represented by a mixture of tensors. For interpolation, each tensor is rotated separately. Results: The method is applied on the synthetic and real DWI data of control and... 

    Molecular dynamics simulation and MM-PBSA calculations of sickle cell hemoglobin in dimer form with Val, Trp, or Phe at the lateral contact

    , Article Journal of Physical Organic Chemistry ; Volume 23, Issue 9 , March , 2010 , Pages 866-877 ; 08943230 (ISSN) Abroshan, H ; Akbarzadeh, H ; Parsafar, G. A ; Sharif University of Technology
    Abstract
    As the delay time and hence nuclei formation play a crucial role in the pathophysiology of sickle cell disease, MD simulation and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) calculations have been performed on three systems of hemoglobin; namely dimer of hemoglobin with valine (Hb S), tryptophan (Hbβ6W), and phenylalanine (Hbβ6F) at β6 position. The structural changes due to these aromatic substitutions are investigated. It is shown that β subunits have significant impact on the differences between a dimer and other crystal structures. Transition from a dimer to polymer for Hb S system affects the donor molecule more than that of the acceptor. In the case of donor and... 

    Trunk coordination in healthy and chronic nonspecific low back pain subjects during repetitive flexion-extension tasks: Effects of movement asymmetry, velocity and load

    , Article Human Movement Science ; Volume 45 , 2016 , Pages 182-192 ; 01679457 (ISSN) Mokhtarinia, H. R ; Sanjari, M. A ; Chehrehrazi, M ; Kahrizi, S ; Parnianpour, M ; Sharif University of Technology
    Elsevier 
    Abstract
    Multiple joint interactions are critical to produce stable coordinated movements and can be influenced by low back pain and task conditions. Inter-segmental coordination pattern and variability were assessed in subjects with and without chronic nonspecific low back pain (CNSLBP). Kinematic data were collected from 22 CNSLBP and 22 healthy volunteers during repeated trunk flexion-extension in various conditions of symmetry, velocity, and loading; each at two levels. Sagittal plane angular data were time normalized and used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify lumbar-pelvis and... 

    Design and development of a hand robotic rehabilitation device for post stroke patients

    , Article Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference ; 2009 , Pages 5026-5029 ; 1557170X (ISSN) Rashedi, E ; Mirbagheri, A ; Taheri, B ; Farahmand, F ; Vossoughi, G. R ; Parnianpour, M ; Sharif University of Technology
    Abstract
    Robot-mediated rehabilitation is a rapidly advancing discipline that seeks to develop improved treatment procedures using new technologies, e.g., robotics, coupled with modern theories in neuroscience and rehabilitation. A robotic device was designed and developed for rehabilitation of upper limbs of post stroke patients. A novel force feedback bimanual working mode provided real-time dynamic sensation of the paretic hand. Results of the preliminary clinical tests revealed a quantitative evaluation of the patient's level of paresis and disability  

    Fluid–structure interaction simulation of a cerebral aneurysm: effects of endovascular coiling treatment and aneurysm wall thickening

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 74 , 2017 , Pages 72-83 ; 17516161 (ISSN) Shamloo, A ; Nejad, M. A ; Saeedi, M ; Sharif University of Technology
    Abstract
    In the present study, we investigate the effect of the hemodynamic factors of the blood flow on the cerebral aneurysms. To this end, a hypothetical geometry of the aneurysm in the circle of Willis, located in the bifurcation point of the anterior cerebral artery (ACA) and anterior communicating artery (ACoA) is modeled in a three-dimensional manner. Three cases are chosen in the current study: an untreated thin wall (first case), untreated thick wall (second case), and a treated aneurysm (third case). The effect of increasing the aneurysm wall thickness on the deformation and stress distribution of the walls are studied. The obtained results showed that in the second case, a reduction in the... 

    Goal equivalent manifold analysis of task performance in non-specific LBP and healthy subjects during repetitive trunk movement; effect of load, velocity, symmetry

    , Article Human Movement Science ; Volume 51 , 2017 , Pages 72-81 ; 01679457 (ISSN) Chehrehrazi, M ; Sanjari, M. A ; Mokhtarinia, H. R ; Jamshidi, A. A ; Maroufi, N ; Parnianpour, M ; Sharif University of Technology
    Abstract
    Motor abundance allows reliability of motor performance despite its variability. The nature of this variability provides important information on the flexibility of control strategies. This feature of control may be affected by low back pain (LPB) and trunk flexion/extension conditions. Goal equivalent manifold (GEM) analysis was used to quantify the ability to exploit motor abundance during repeated trunk flexion/extension in healthy individuals and people with chronic non-specific LBP (CNSLBP). Kinematic data were collected from 22 healthy volunteers and 22 CNSLBP patients during metronomically timed, repeated trunk flexion/extension in three conditions of symmetry, velocity, and loading;... 

    Detection and a possible link between parvovirus B19 and thyroid cancer

    , Article Tumor Biology ; Volume 39, Issue 6 , 2017 ; 10104283 (ISSN) Etemadi, A ; Mostafaei, S ; Yari, K ; Ghasemi, A ; Chenar, H. M ; Moghoofei, M ; Sharif University of Technology
    Abstract
    Human parvovirus B19 (B19) is a small, non-enveloped virus and belongs to Parvoviridae family. B19 persists in many tissues such as thyroid tissue and even thyroid cancer. The main aim of this study was to determine the presence of B19, its association with increased inflammation in thyroid tissue, and thus its possible role in thyroid cancer progression. Studies have shown that virus replication in non-permissive tissue leads to overexpression of non-structural protein and results in upregulation of proinflammatory cytokines such as interleukin 6 and tumor necrosis factor alpha. A total of 36 paraffin-embedded thyroid specimens and serum were collected from patients and 12 samples were used... 

    Search for critical loading condition of the spine-A meta analysis of a nonlinear viscoelastic finite element model

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 8, Issue 5 , 2005 , Pages 323-330 ; 10255842 (ISSN) Wang, J. L ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2005
    Abstract
    The relative vulnerability of spinal motion segments to different loading combinations remains unknown. The meta-analysis described here using the results of a validated L2-L3 nonlinear viscoelastic finite element model was designed to investigate the critical loading and its effect on the internal mechanics of the human lumbar spine. A Box-Behnken experimental design was used to design the magnitude of seven independent variables associated with loads, rotations and velocity of motion. Subsequently, an optimization method was used to find the primary and secondary variables that influence spine mechanical output related to facet forces, disc pressure, ligament forces, annulus matrix... 

    Modeling the Parkinson's tremor and its treatments

    , Article Journal of Theoretical Biology ; Volume 236, Issue 3 , 2005 , Pages 311-322 ; 00225193 (ISSN) Haeri, M ; Sarbaz, Y ; Gharibzadeh, S ; Sharif University of Technology
    2005
    Abstract
    In this paper, we discuss modeling issues of the Parkinson's tremor. Through the work we have employed physiological structure as well as functioning of the parts in brain that are involved in the disease. To obtain more practical similarity, random behaviors of the connection paths are also considered. Medication or treatment of the disease both by drug prescription and electrical signal stimulation are modeled based on the same model introduced for the disease itself. Two new medication strategies are proposed based on the model to reduce the side effects caused by the present drug prescription. © 2005 Elsevier Ltd. All rights reserved  

    A rigid body spring model to investigate the lateral shift-Restraining force behavior of the patellar

    , Article 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07, Lyon, 23 August 2007 through 26 August 2007 ; 2007 , Pages 4679-4682 ; 05891019 (ISSN) ; 1424407885 (ISBN); 9781424407880 (ISBN) Jafari, A ; Farahmand, F ; Meghdari, A ; Sharif University of Technology
    2007
    Abstract
    Patellar lateral stability was studied using a 2D transverse plane model with deformable articular surfaces. Quadriceps muscles and patellar tendon were considered as strings with predefined forces and lateral and medial retinaculum as tensile springs. Deformation behavior of articular cartilage was modeled by a set of compression springs perpendicular to articular surfaces, based on rigid body spring model method (RBSM). Patellar lateral stability was investigated using restraining force method (the external force required to cause up to 10 mm lateral displacement on patella). The results were in good agreement with experimental reports for normal joint, vastus lateralis and vastus medialis... 

    Association of glomerular and tubular dysfunction with glycaemic control, lipid, lipoprotein, apolipoprotein and antioxidant status in type 2 diabetes mellitus

    , Article Singapore Medical Journal ; Volume 48, Issue 9 , 2007 , Pages 840-846 ; 00375675 (ISSN) Farvid, M. S ; Djalali, M ; Siassi, F ; Farvid, S. S ; Sharif University of Technology
    Singapore Medical Association  2007
    Abstract
    Introduction: This study was conducted to investigate the relationship of glomerular and tubular dysfunctions with glycaemic control, lipid, lipoprotein, apolipoproteins and antioxidant status in 72 patients with type 2 diabetes mellitus. Methods: Urine albumin concentration was measured by immunoturbidimetric and urine N-acetyl-beta-D-glucosaminidase (NAG) and alanine aminopeptidase (AAP) activities with colorimetric methods. Glycated haemoglobin was measured using affinity chromatography. Erythrocyte glu ta thione reductase and glutathione peroxidase activities and serum levels of malondialdehyde, lipids, lipoproteins and apolipoproteins were determined in patients with type 2 diabetes... 

    Adaptive neuro-fuzzy inference system for classification of ACL-ruptured knees using arthrometric data

    , Article Annals of Biomedical Engineering ; Volume 36, Issue 9 , 9 July , 2008 , Pages 1449-1457 ; 00906964 (ISSN) Heydari, Z ; Farahmand, F ; Arabalibeik, H ; Parnianpour, M ; Sharif University of Technology
    2008
    Abstract
    A new approach, based on Adaptive-Network-based Fuzzy Inference System (ANFIS), is presented for the classification of arthrometric data of normal/ACL-ruptured knees, considering the insufficiency of existing criteria. An ANFIS classifier was developed and tested on a total of 4800 arthrometric data points collected from 40 normal and 40 injured subjects. The system consisted of 5 layers and 8 rules, based on the results of subtractive data clustering, and trained using the hybrid algorithm method. The performance of the system was evaluated in four runs, in the framework of a 4-fold cross validation algorithm. The results indicated a definite correct diagnosis for typical injured and normal... 

    Relative efficiency of abdominal muscles in spine stability

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 11, Issue 3 , 2008 , Pages 291-299 ; 10255842 (ISSN) Arjmand, N ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2008
    Abstract
    Using an iterative kinematics-driven nonlinear finite element model, relative efficiency of individual abdominal muscles in spinal stability in upright standing posture was investigated. Effect of load height on stability and muscle activities was also computed under different coactivity levels in abdominal muscles. The internal oblique was the most efficient muscle (compared with the external oblique and rectus abdominus) in providing stability while generating smaller spinal loads with lower fatigue rate of muscles. As the weight was held higher, stability deteriorated requiring additional flexor-extensor activities. The stabilising efficacy of abdominal muscles diminished at higher... 

    The effects of trochlear groove geometry on patellofemoral joint stability - A computer model study

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 222, Issue 1 , 2008 , Pages 75-88 ; 09544119 (ISSN) Jafari, A ; Farahmand, F ; Meghdari, A ; Sharif University of Technology
    2008
    Abstract
    The effect of the variation in the femoral groove geometry on patellofemoral joint stability was studied using a two dimensional transverse plane model with deformable articular surfaces. The femoral and patellar bony structures were modelled as rigid bodies with their profiles expressed by splines. The articular cartilage was discretized into compression springs, distributed along the femoral and patellar profiles, based on the rigid-body spring model. The medial and lateral retinacula were modelled as linear tensile springs, and the quadriceps muscles and patellar tendon as strings with known tension. The anatomical data were obtained from the transverse plane magnetic resonance images of... 

    Computer simulation of knee arthrometry to study the effects of partial ACL injury and tibiofemoral contact

    , Article 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08, Vancouver, BC, 20 August 2008 through 25 August 2008 ; 2008 , Pages 895-898 ; 9781424418152 (ISBN) Rahemi, H ; Farahmand, F ; Rezaeian, T ; Parnianpour, M ; Sharif University of Technology
    IEEE Computer Society  2008
    Abstract
    We simulated the knee arthrometry test to obtain a deeper understanding of the joint's stability behavior and interpret the arthrometric results more effectively. A 2D sagittal plane finite element model of the lower limb in the standard configuration of knee arthrometry was developed using ANSYS APDL. A detailed model of the knee joint was considered including the femoral articulating contour represented by an ellipse, the tibial plateau represented by a circular arc, and four major knee ligaments and their individual bundles represented by linear and nonlinear tensile springs. A deformable layer of articular cartilage was also considered over the tibial plateau to simulate the bones... 

    The effect of angle and level of exertion on trunk neuromuscular performance during multidirectional isometric activities

    , Article Spine ; Volume 34, Issue 5 , 2009 , Pages E170-E177 ; 03622436 (ISSN) Mousavi, J ; Olyaei, G. R ; Talebian, S ; Sanjari, M. A ; Parnianpour, M ; Sharif University of Technology
    2009
    Abstract
    STUDY DESIGN.: To quantify trunk muscle capability and controllability in different angles and levels of isometric exertion using a torque tracking system. OBJECTIVE.: To investigate the effect of biaxial isometric exertions on the maximum capability of trunk and to examine the effect of angle and level of isometric exertion on trunk controllability during the tracking task in upright posture. SUMMARY OF BACKGROUND DATA.: Combined motions of trunk at varying exertion levels occur in most daily and occupational activities and are important risk factors of low back pain. Few studies have investigated trunk capability and controllability during multidirectional activities with different... 

    Translation and validation study of the Persian version of the Arthritis Impact Measurement Scales 2 (AIMS2) in patients with osteoarthritis of the knee

    , Article BMC Musculoskeletal Disorders ; Volume 10, Issue 1 , 2009 ; 14712474 (ISSN) Mousavi, S. J ; Parnianpour, M ; Askary Ashtiani, A. R ; Hadian, M. R ; Rostamian, A ; Montazeri, A ; Sharif University of Technology
    2009
    Abstract
    Background. The Arthritis Impact Measurement Scales 2 (AIMS2) has not been translated and validated for Persian-speaking patients with osteoarthritis of the knee. This was to provide a validated instrument to measure functional disability and health-related quality of life in patients with osteoarthritis of the knee in Iran. The aim of this study was to culturally adapt and validate the AIMS2 for Persian-speaking patients with osteoarthritis of the knee in Iran. Methods. A consecutive sample of patients with knee osteoarthritis were asked to complete the AIMS2, the Short Form Health Survey (SF-36) and four visual analog scales for pain, joint stiffness, patient's and physician's global... 

    Synthetic ECG generation and bayesian filtering using a Gaussian wave-based dynamical model

    , Article Physiological Measurement ; Volume 31, Issue 10 , 2010 , Pages 1309-1329 ; 09673334 (ISSN) Sayadi, O ; Shamsollahi, M. B ; Clifford, G. D ; Sharif University of Technology
    2010
    Abstract
    In this paper, we describe a Gaussian wave-based state space to model the temporal dynamics of electrocardiogram (ECG) signals. It is shown that this model may be effectively used for generating synthetic ECGs as well as separate characteristic waves (CWs) such as the atrial and ventricular complexes. The model uses separate state variables for each CW, i.e. P, QRS and T, and hence is capable of generating individual synthetic CWs as well as realistic ECG signals. The model is therefore useful for generating arrhythmias. Simulations of sinus bradycardia, sinus tachycardia, ventricular flutter, atrial fibrillation and ventricular tachycardia are presented. In addition, discrete versions of...