Loading...
Search for: permanent-magnets
0.006 seconds
Total 86 records

    Experimental investigation on the fault diagnosis of permanent magnet DC electromotors

    , Article Insight: Non-Destructive Testing and Condition Monitoring ; Volume 55, Issue 8 , August , 2013 , Pages 422-427 ; ISSN: 13542575 Behzad, M ; Ebrahimi, A ; Heydari, M ; Asadi, M ; Alasti, A ; Sharif University of Technology
    Abstract
    In this paper, an algorithm for fault diagnosis of permanent magnet DC electromotors.has been investigated, based on vibration and electrical current monitoring. Several permanent magnet DC electromotors.with previously determined faults have been prepared and the vibration, current and speed data have been measured. The relationship between certain related measured data and faults has been determined. A fault diagnosis algorithm has been developed in this research based on these relationships. This algorithm can be used in mass production lines for quality control  

    Sensorless control of non-salient PMSM using simultaneous injection of two HF signals

    , Article Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC ; March , 2014 , p. 2463-2468 Ghazimoghadam, M. A ; Yaghoubi, M ; Tahami, F ; Bakhshai, A ; Jain, P. K ; Sharif University of Technology
    Abstract
    In recent years sensorless techniques based on HF carrier injection have become very popular as they are capable to estimate rotor position in a wide speed range. They can provide precise control over interior PMSMs without the accompanying need for a position sensor. However, in surface-mounted PMSMs, the estimation of rotor position is only reliable at light loads due to the very small saliency arising from main flux saturation. The anisotropy caused by stator flux saturation is not necessarily in alignment with rotor position especially at heavy loads. In this paper a novel solution is proposed to make use of the sensorless scheme in a surface-mounted PMSM even at heavy loads  

    Reactive power control of permanent-magnet synchronous wind generator with matrix converter

    , Article IEEE Transactions on Power Delivery ; Volume 28, Issue 2 , 2013 , Pages 575-584 ; 08858977 (ISSN) Hojabri, H ; Mokhtari, H ; Chang, L ; Sharif University of Technology
    2013
    Abstract
    In this paper, the reactive power control of a variable-speed permanent-magnet synchronous wind generator with a matrix converter at the grid side is improved. A generalized modulation technique based on singular value decomposition of the modulation matrix is used to model different modulation techniques and investigate their corresponding input reactive power capability. Based on this modulation technique, a new control method is proposed for the matrix converter which uses active and reactive parts of the generator current to increase the control capability of the grid-side reactive current compared to conventional modulation methods. A new control structure is also proposed which can... 

    Sensorless control of PMSMs with tolerance for delays and stator resistance uncertainties

    , Article IEEE Transactions on Power Electronics ; Volume 28, Issue 3 , 2013 , Pages 1391-1399 ; 08858993 (ISSN) Moghadam, M. A. G ; Tahami, F ; Sharif University of Technology
    2013
    Abstract
    Position sensorless control of ac machines at zero and low speed is possible using high-frequency carrier injection methods. These methods utilize anisotropic properties of rotor. Therefore, they may lose their efficiency for nonsalient machines or machines with small rotor saliency. In these machines, measurement noise and offset, existing delays, as well as model uncertainties may lead to inaccurate estimation of rotor position. Stator resistance which is usually neglected in these methods may also lead to a considerable error especially in machines with small rotor saliency. In this paper, a new position estimation method is presented, and it is shown that in comparison to conventional... 

    Resonance frequencies and stability of two flexible permanent magnetic beams facing each other

    , Article Journal of Sound and Vibration ; Volume 331, Issue 26 , 2012 , Pages 5745-5754 ; 0022460X (ISSN) Firouz Abadi, R. D ; Mohammadkhani, H ; Sharif University of Technology
    2012
    Abstract
    This paper aims at investigating the interaction of two flexible permanent magnet beams facing each other. The governing equations of motion are obtained based on the Euler-Bernoulli beam model along with Hamiltons principle. Assuming that the beams tips are far enough, each magnet beam is considered as a series of dipole segments and the external force and moment distributions over each beam due to the magnetic field of the other one is calculated in the deformed configuration. The transverse deflections of the beams are written as series expansions of the mode shapes of an unloaded cantilever beam and the Galerkin method is applied to determine the stability and resonance frequencies.... 

    Prediction of chaos in non-salient permanent-magnet synchronous machines

    , Article Physics Letters, Section A: General, Atomic and Solid State Physics ; Volume 377, Issue 1-2 , December , 2012 , Pages 73-79 ; 03759601 (ISSN) Rasoolzadeh, A ; Tavazoei, M. S ; Sharif University of Technology
    2012
    Abstract
    This Letter tries to find the area in parameter space of a non-salient Permanent-Magnet Synchronous Machine (PMSM) in which chaos can occur. This area is briefly named as chaotic area. The predicted chaotic area is obtained by checking some conditions which are necessary for existence of chaos in a dynamical system. In this Letter, it is assumed that this machine is in the generator mode, and its model is based on direct and quadrature axis of stator voltages and currents. The information of the predicted area is used in non-chaotic maximum power control of torque in the machine  

    Compensation of transient error in sensorless alternating carrier injection scheme

    , Article IECON Proceedings (Industrial Electronics Conference) ; 2012 , Pages 1702-1706 ; 9781467324212 (ISBN) Ghazimoghadam, M. A ; Tahami, F ; Sharif University of Technology
    2012
    Abstract
    High frequency (HF) carrier injection schemes can estimate rotor position in a wide speed range. In these methods, first a HF voltage is injected to stator windings and then the corresponding HF current is exploited to estimate the position of rotor using a closed loop tracking observer. The tracking observer is capable to track rotor saliency with no steady state error. However when the motor starts to move or whenever the rotor speed changes a transient error appears. In this paper a new solution is proposed to compensate the transient error in estimation of rotor position  

    An analytical 3-D model for calculating eddy-current damping force for a magnetic levitation system with permanent magnet

    , Article IEEE Transactions on Magnetics ; Volume 48, Issue 9 , Sept , 2012 , Pages 2472-2478 ; 00189464 (ISSN) Ebrahimian, M ; Khodabakhsh, M ; Vossoughi, G ; Sharif University of Technology
    IEEE  2012
    Abstract
    An analytical solution for obtaining steady-state eddy-current-based force on a levitated permanent magnet above a plate with linear conductivity in the field of an electromagnet having cylindrical symmetry is presented in this paper. In literature, the force due to eddy current in this levitation system have been used for high precision positioning of a levitated permanent magnet without providing an explicit analytical model. In this system, a change in the coil's current and also the motion of the levitated permanent magnet in 3-D space generate eddy current in the plate. A novel explicit solution for obtaining damping forces due to these eddy currents is obtained as a function of... 

    A predictive loss minimisation direct torque control of permanent magnet synchronous motors

    , Article Australian Journal of Electrical and Electronics Engineering ; Volume 9, Issue 1 , 2012 , Pages 89-98 ; 1448837X (ISSN) Siahbalaee, J ; Vaez Zadeh, S ; Tahami, F ; Sharif University of Technology
    2012
    Abstract
    Although permanent magnet synchronous motors (PMSMs) are inherently of high efficiency, their efficiency is enormously dependent on their control strategy. The purpose of this paper is to improve the efficiency of PMSMs under a direct torque control (DTC) method. The main idea behind the proposed method is to predict a required small change of the statorflux amplitude at each sampling period to reduce the machine electrical loss before the change is applied. Accordingly, at every sampling time, a voltage vector is predicted and applied to the machine to change the flux amplitude in a xvay that the electrical loss decreases. The results of simulation show significant improvement in the... 

    Transient error compensation in sensorless control of PMSM

    , Article 2012 3rd Power Electronics and Drive Systems Technology, PEDSTC 2012, 15 February 2012 through 16 February 2012 ; February , 2012 , Pages 38-43 ; 9781467301114 (ISBN) Ghazimoghadam, M. A ; Tahami, F ; Sharif University of Technology
    2012
    Abstract
    Sensorless schemes based on HF carrier injection are capable of estimating rotor position in a wide speed range. In these schemes first an additional HF voltage is injected to stator windings. The corresponding HF current is decoupled from main stator currents and the position of the rotor saliency is estimated based on the decoupled HF current in a closed loop tracking observer. The tracking observer is capable of tracking rotor saliency with no steady state error. Transient error appears when the motor starts to move or whenever the rotor speed changes because of any disturbance or any change in the rotor speed command. In this paper a new solution is proposed in order to compensate for... 

    Flux estimation by asymmetric carrier injection for sensorless direct torque control of PMSM

    , Article 2012 3rd Power Electronics and Drive Systems Technology, PEDSTC 2012, 15 February 2012 through 16 February 2012 ; February , 2012 , Pages 44-50 ; 9781467301114 (ISBN) Ghazimoghadam, M. A ; Tahami, F ; Sharif University of Technology
    2012
    Abstract
    The combination of direct torque control and permanent magnet synchronous motors (PMSMs) provides a highly dynamic drive. In this paper direct torque control method of PMSM is merged with a sensorless control algorithm and a robust flux observer is proposed which results in a high performance highly reliable drive. First a high frequency signal injection method within DTC algorithm is introduced to estimate the rotor position of PMSM. Then the method is modified in order to estimate stator dynamic inductances. The stator inductances are then used in a current model flux observer  

    Sensorless control of non-salient PMSM using asymmetric alternating carrier injection

    , Article 2011 IEEE Symposium on Industrial Electronics and Applications, ISIEA 2011, 25 September 2011 through 28 September 2011 ; September , 2011 , Pages 7-12 ; 9781457714184 (ISBN) Ghazimoghadam, M. A ; Tahami, F ; Sharif University of Technology
    Abstract
    Sensorless control of permanent magnet synchronous motors allows reducing cost and complexity, and increasing mechanical robustness and noise immunity. Sensorless methods based on high frequency carrier injection have attracted considerable attention in recent years as they can estimate rotor position in a wide speed range. These methods employ anisotropic properties of rotor to estimate rotor position in ac machines. With internal permanent magnet motors, the high frequency signal injection method can deliver precise sensorless control, however in surface-mounted permanent magnet machines, where a small saliency arises from main flux saturation, the estimation of rotor magnet position is... 

    Maximum torque per ampere control of permanent magnet synchronous motor using genetic algorithm

    , Article Telkomnika ; Volume 9, Issue 2 , 2011 , Pages 237-244 ; 16936930 (ISSN) Tahami, F ; Nademi, H ; Rezaei, M ; Sharif University of Technology
    Abstract
    Permanent magnet synchronous motor (PMSM) drives have many advantages over other drives, i.e. high efficiency and high power density. Particularly, PMSMs are epoch-making and are intensively studied among researchers, scientists and engineers. This paper deals with a novel high performance controller based on genetic algorithm. The scheme allows the motor to be driven with maximum torque per ampere characteristic. In this paper assuming an appropriate fitness function, the optimum values for d-axis current of motor set points at each time are found and then applied to the controller. Simulation results show the successful operation of the proposed controller  

    A novel revolving piston minipump

    , Article Sensors and Actuators, B: Chemical ; Volume 218 , October , 2015 , Pages 237-244 ; 09254005 (ISSN) Ashouri, M ; Shafii, M. B ; Moosavi, A ; Amiri Hezave, H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, a novel prototype high-efficiency miniature pump that uses magnetic properties of a ferrofluid in both pumping and valving mechanisms is presented. The minichannel consisting of a cylindrical pumping chamber, a check valve, an inlet and an outlet, comprises six bonded layers of PMMA. A cylindrical permanent magnet that is placed inside the chamber and is externally actuated by a motorized off-center permanent magnet, functions as a revolving piston which sweeps the perimeter of the cylinder. Ferrofluid is used to cover the gaps between the magnetic piston and the channel walls, also serves as a separating plug between the inlet and the outlet of the chamber preventing... 

    Design of Three-Phase to Single-phase Converter Suitable for Small Range Wind Turbine with PMSG

    , M.Sc. Thesis Sharif University of Technology Shamsnia, Ali (Author) ; Mokhtari, Hossein (Supervisor)
    Abstract
    In this research a special Three-Phase to Single-Phase converter has been proposed to connect a three-phase Permanent Magnet Synchronous Generator (PMSG) of a wind turbine to a single-phase network. Common back-to-back converter used for this application employs a bulk capacitor in its DC link to generate the pulsating component of the single-phase side instantaneous power. This capacitor is costly and reduces system overall reliability. This problem is alleviated in this work by providing the single-phase load pulsating power using the PMSG large inductances. The proposed system leaves the PMSG torque ripple-free while providing the single-phase load power. With the help of this method,... 

    Sensor-Less Control of Permanent Magnet Synchronous Motor Using High Frequency Signal Injection

    , M.Sc. Thesis Sharif University of Technology Ghazi Moghadam, Mohammad Ali (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    In this thesis one of the sensorless methods which exploits the existing anisotropies of the rotor is utilized to estimate rotor position. In order to implement this method, first a high frequency voltage is injected in a specific, time-varying direction and then the corresponding current response would be observed in order to estimate the rotor saliency position. The estimation of rotor position would be more precise as the magnetic anisotropy due to rotor saliency increases and as a result the effect of noise and different disturbances in estimation of rotor position would be decresed. The effect of stator resistence is one of these disturbances which is usually neglected as a result of... 

    Analysis and Improvement of The Low-Voltage Ride Through Capability of Permanent-Magnet Synchronous Generator-Based Wind Turbines

    , M.Sc. Thesis Sharif University of Technology Asadi Khoshouei, Ebrahim (Author) ; Parniani, Mostafa (Supervisor)
    Abstract
    Permanent-magnet synchronous generators have attracted more attention in recent years due to their special advantages which make them a suitable option for variable-speed wind turbines.Low-voltage ride through capability is one of the main concerns in widespread use of wind turbines in electric grids. Nowadays wind turbines are expected to remain connected to the grid during voltage dips and support the voltage recovery process by supplying reactive power.This thesis aims at behavior analysis and performance improvement of permanent-magnet synchronous generator-based wind turbines during grid faults. A simple method is presented to overcome the over current problem of the grid-side converter... 

    Utilization of Airborne Wind Energy in Iran

    , M.Sc. Thesis Sharif University of Technology Hodjat, Ahmad (Author) ; Vesaghi, Mohammad Ali (Supervisor) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    A Flying Electric Generator (FEG) can be a wind turbine which operates at high altitudes, where there is a continuous fast flow of air and converts wind energy to electrical power.The related field is an interdisciplinary area and is mostly related to the Aerospace Engineering and Energy Conversion. We focused on Iran, as one of the few lands in the northern hemisphere that has a high overall amount of high altitude wind energy for at least half of the year over it, according to the information of atlas of airborne wind energy in this work.So to install the FEGs in Iran, we had to find, places with a safe aerial space overhead which grant us reliable spots over country. These places found by... 

    Prediction and Control of Chaos in Permanent Magnet Synchronous Machines

    , M.Sc. Thesis Sharif University of Technology Rasoolzadeh, Arsalan (Author) ; Tavazoei, Mohammad Saleh (Supervisor)
    Abstract
    Synchronous machines is one of the most popular machines in industry and in power plants. Because the dynamic of this machine is nonlinear, it can exhibit complex behaviors. In this project we have studied a special case in Permanent Magnet Synchronous Machines. A case in which speed of rotor, frequency, currents amplitude and voltages amplitude change in an irregular manner. This special case is called chaos. Chaos occurs for some specific values of parameters and inputs. In this study in the first step, we have tried to find the chaotic area of parameters of system (Prediction of chaos). Then in the next step, we have designed some controllers which can eliminate chaos in the system. The... 

    Design and Implementation of High Efficient Power Converter for Small PM Synchronous Wind Generator

    , M.Sc. Thesis Sharif University of Technology Rezazadeh Sotudeh, Ghasem (Author) ; Tahami, Farzad (Supervisor)
    Abstract
    The global wind energy capacity has been increased rapidly in the past few years and became the fastest developing renewable energy technology. Small Permanent Magnet Synchronous Generators (PMSG’s) are widely used in low power wind turbines because they don’t need a gearbox and complicated control systems. In order to inject the electrical power generated by PMSG to the grid, an AC-DC-AC power electronic converter is required. A novel low cost efficient AC-DC converter is proposed to obtain the maximum power per ampere of PMSG. The new structure for the rectifier stage of the AC/AC converter is based on a DCM operated SEPIC converter and can convert the variable voltage and frequency of...