Loading...
Search for: photocurrents
0.007 seconds
Total 42 records

    Alkali metal cation incorporation in conductive TiO2 nanoflakes with improved photoelectrochemical h2 generation

    , Article ChemElectroChem ; Volume 7, Issue 7 , March , 2020 , Pages 1699-1706 Khorashadizade, E ; Mohajernia, S ; Hejazi, S ; Mehdipour, H ; Naseri, N ; Moradlou, O ; Liu, N ; Moshfegh, A. Z ; Schmuki, P ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    In this research, we investigate the effect of alkali metal cations including Li, Na and Cs in hydrothermal solution on the morphology, stability, and photoactivity of nanostructured TiO2 nanoflakes as a photoanode. The TiO2 nanoflakes are formed through hydrothermal treatment of Ti foil in 1.0 M LiOH, NaOH or CsOH at 100 °C for 3 h. By subsequent thermal reduction of the structure in an optimized Ar/H2 environment, conductive TiO2 nanoflakes were formed. The reduction treatment remarkably improves the photocurrent density of the TiO2 nanoflakes and has the highest impact on the sample treated in the NaOH alkali solution. For the nanoflakes produced in NaOH alkali solution, the bandgap is... 

    Fabrication of dual-phase TiO2/WO3with post-illumination photocatalytic memory

    , Article New Journal of Chemistry ; Volume 44, Issue 46 , 2020 , Pages 20375-20386 Mokhtarifar, M ; Nguyen, D. T ; Diamanti, M. V ; Kaveh, R ; Asa, M ; Sakar, M ; Pedeferri, M ; Do, T. O ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    This study describes the synthesis of TiO2/WO3 composite systems with a varying concentration of WO3 by a glucose-template assisted method and demonstrates their round-the-clock photoactivity performance towards the degradation of methanol (MeOH) under illumination and dark conditions. XRD results indicated a biphasic anatase-rutile nature of TiO2, with tunable concentrations with respect to the WO3 loading. WO3 incorporation extended the light absorption of the system towards visible light, increasing the observed photoactivity. The obtained results were further validated using photo-electrochemical investigations such as photocurrent measurements and the impedance response of the systems.... 

    When photoluminescence, electroluminescence, and open-circuit voltage diverge-light soaking and halide segregation in perovskite solar cells

    , Article Journal of Materials Chemistry A ; Volume 9, Issue 24 , 2021 , Pages 13967-13978 ; 20507488 (ISSN) Ebadi, F ; Yang, B ; Kim, Y ; Mohammadpour, R ; Taghavinia, N ; Hagfeldt, A ; Tress, W ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Perovskite solar cells suffer from various instabilities on all time scales. Some of them are driven by light, in particular when employing compounds with mixed halides. Such light soaking effects have been observed to result in performance changes of solar-cell devices. They have also been spectroscopically investigated in detail on films, where the formation of a low-gap iodine-rich phase, seen as a red shift of the PL, has been found to be responsible for a reduced open-circuit voltage. However, studies synchronously examining device performance and its relation to spectroscopy data are scarce. Here, we perform an in operando study, where we investigate the changes of open-circuit voltage... 

    An ultrathin amorphous defective co-doped hematite passivation layer derived via an in situ electrochemical method for durable photoelectrochemical water oxidation

    , Article Journal of Materials Chemistry A ; Volume 10, Issue 31 , 2022 , Pages 16655-16665 ; 20507488 (ISSN) Fathabadi, M ; Qorbani, M ; Sabbah, A ; Quadir, S ; Huang, C. Y ; Chen, K. H ; Chen, L. C ; Naseri, N ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Although hematite (i.e., α-Fe2O3) has been widely investigated in photoelectrochemical water oxidation studies due to its high theoretical photocurrent density, it still suffers from serious surface charge recombination and low photoelectrochemical stability. Here we report an in situ electrochemical method to form a uniform and ultrathin (i.e., 3-5 nm) passivation layer all over the pores of an optimized ∼3.2% Ti-doped α-Fe2O3 photoanode. We unveil the amorphous and defective nature of the in situ derived layer assigned to a high concentration of oxygen vacancies and intercalated potassium atoms there, i.e., the formation of Ti/K co-doped defective α-Fe2O3−x. Owing to the efficient... 

    Effect of ZnO nanoparticles coating layers on top of ZnO nanowires for morphological, optical, and photovoltaic properties of dye-sensitized solar cells

    , Article Micromachines ; Volume 10, Issue 12 , 2019 ; 2072666X (ISSN) Saleem, M ; Farooq, W. A ; Iftikhar Khan, M ; Niaz Akhtar, M ; Rehman, S. U ; Ahmad, N ; Khalid, M ; Atif, M ; AlMutairi, M. A ; Irfan, M ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    This paper reports on the synthesis of ZnO nanowires (NWs), as well asthe compound nanostructures of nanoparticles (NPs) and nanowires (NWs+NPs) with different coating layers of NPs on the top of NWs and their integration in dye-sensitized solar cells (DSSCs). In compound nanostructures, NWs offer direct electrical pathways for fast electron transfer, and the NPs of ZnOdispread and fill the interstices between the NWs of ZnO, offering a huge surface area for enough dye anchoring and promoting light harvesting. A significant photocurrent density of 2.64mA/cm2 and energy conversion efficiency of 1.43% was obtained with NWs-based DSSCs. The total solar-to-electric energy conversion efficiency... 

    Photoelectrochemical water-splitting using CuO-Based electrodes for hydrogen production: a review

    , Article Advanced Materials ; Volume 33, Issue 33 , 2021 ; 09359648 (ISSN) Siavash Moakhar, R ; Hosseini Hosseinabad, S. M ; Masudy Panah, S ; Seza, A ; Jalali, M ; Fallah Arani, H ; Dabir, F ; Gholipour, S ; Abdi, Y ; Bagheri Hariri, M ; Riahi Noori, N ; Lim, Y. F ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    The cost-effective, robust, and efficient electrocatalysts for photoelectrochemical (PEC) water-splitting has been extensively studied over the past decade to address a solution for the energy crisis. The interesting physicochemical properties of CuO have introduced this promising photocathodic material among the few photocatalysts with a narrow bandgap. This photocatalyst has a high activity for the PEC hydrogen evolution reaction (HER) under simulated sunlight irradiation. Here, the recent advancements of CuO-based photoelectrodes, including undoped CuO, doped CuO, and CuO composites, in the PEC water-splitting field, are comprehensively studied. Moreover, the synthesis methods,... 

    Plasmonic enhancement of photocurrent generation in two-dimensional heterostructure of WSe2/MoS2

    , Article Nanotechnology ; Volume 32, Issue 32 , 2021 ; 09574484 (ISSN) Ghods, S ; Esfandiar, A ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Enhancing the photoresponse of single-layered semiconductor materials is a challenge for high-performance photodetectors due to atomically thickness and limited quantum efficiency of these devices. Band engineering in heterostructure of transition metal chalcogenides (TMDs) can sort out part of this challenge. Here, we address this issue by utilizing the plasmonics phenomenon to enrich the optoelectronics property of the WSe2/MoS2 heterojunction and further enhancement of photoresponse. The introduced approach presents a contamination-free, tunable and efficient way to improve light interactions with heterojunction devices. The results showed a 3600-fold enhancement in photoresponsivity and... 

    A novel high gain extendable dc-dc bidirectional boost-buck converter

    , Article 237th ECS Meeting with the 18th International Meeting on Chemical Sensors, IMCS 2020, 10 May 2020 through 14 May 2020 ; Volume 97, Issue 7 , 2020 , Pages 845-856 Hosseini H., S. M ; Siavash Moakhar, R ; Soleimani, F ; Goudarzi, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    In-situ deposition of cupric oxide (CuO) thin films on fluorine-doped tin oxide is performed through a rapid microwave-assisted method. The duration of microwave (MW) irradiation is optimized in order to prepare efficient and stable photocathodes for photoelectrochemical (PEC) water splitting. We obtain CuO with a unique morphology consisted of intermingled nanosheets. We evaluate PEC performance of the photocathodes through Linear Sweep Voltammetry (LSV) and current stability analyses. The highest achieved photocurrent density is -1.15 mA.cm-2 at 0 V vs. RHE for the sample MW-irradiated for 60 min. This value is comparable or superior to several other CuO-based photocathodes prepared by... 

    Effect of sodium carbonate as an additive on the morphology and photocatalytic activity of TiO2 nanotubes

    , Article Materials Research Bulletin ; Volume 95 , 2017 , Pages 169-176 ; 00255408 (ISSN) Alitabar, M ; Yoozbashizadeh, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The major purpose of this research is increasing the photocatalytic activity of TiO2 nanotube arrays by doping with sodium and carbon for using in water splitting as photoanode. The synthesized TiO2 nanotubes (TNA) were characterized using FESEM (Field Emission Scanning Electron Microscope), XRD (X-ray Diffraction), DRS (Diffraction Reflection Spectroscopy) and XPS test (X-ray Photoelectron Spectroscopy) analyses. The results of FTIR and XPS confirmed the presence of sodium and carbon in the lattice of TNA as dopants. Moreover, the DRS test showed the decrease in the band gap energy of TNA from 3.20 to ∼2.88 eV; uv-visible test exhibited extension in the absorption edge of pure TiO2... 

    Photoresponse enhancing in nanostructured WO3films by slight change in heating ambient

    , Article Journal of Alloys and Compounds ; Volume 693 , 2017 , Pages 871-875 ; 09258388 (ISSN) Naseri, N ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Providing solar hydrogen as a clean energy resource is one of the human challenges for future. Controlling oxygen vacancies as well as surface morphology in metal oxide semiconductors enables developing PEC H2production in some understood ways. Here, the influence of simple change in annealing atmosphere, air and pure oxygen, on photoresponse of nanocrystalline WO3has been studied completely. Results revealed that such slight change in annealing procedure increases effective surface interface and donor density by 77 and 72%, respectively. These effects and also retarding recombination of photogenerated electro-hole pair resulted in photocurrent enhancement under solar like illumination more... 

    Photoelectrochemical activity of graphene quantum dots/hierarchical porous TiO2 photoanode

    , Article Journal of Alloys and Compounds ; Volume 721 , 2017 , Pages 36-44 ; 09258388 (ISSN) Azimirad, R ; Safa, S ; Ebrahimi, M ; Yousefzadeh, S ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this study, initially graphene quantum dots (GQDs) were synthesized by an electrochemical technique and hierarchical porous TiO2 were made by a sol – gel method. Subsequently, GQDs/hierarchical porous TiO2 nanocomposites were prepared by two different methods for the purpose of comparison: spin coating (SC) and electrophoretic (EP) deposition. The GQDs/hierarchical porous TiO2 nanocomposites were characterized by various analytical methods including field emission scanning electron microscopy, atomic force microscopy, transmission electron microscopy, high resolution transmission electron microscopy, Fourier transform infra-red spectroscopy, photoluminescence spectroscopy and... 

    Hole transport material based on modified N-annulated perylene for efficient and stable perovskite solar cells

    , Article Solar Energy ; Volume 194 , 2019 , Pages 279-285 ; 0038092X (ISSN) Sheibani, E ; Amini, M ; Heydari, M ; Ahangar, H ; Keshavarzi, R ; Zhang, J ; Mirkhani, V ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    N-annulated perylene based materials show outstanding and tunable optical and physical properties, making them suitable to be charge transport materials for optoelectronic applications. However, this type of materials has so far not been well studied in solar cells. Here, we develop a new hole transport material (HTM), namely S5, based on perylene building block terms, for organic-inorganic hybrid perovskite solar cells (PSCs). We have systematically studied the influences of the film thickness of S5 on their photovoltaic performance, and a low concentration of S5 with a thinner HTM film is favorable for obtaining higher solar cell efficiency. S5 shows excellent energy alignment with... 

    Green synthesis of Ag–Pt bimetallic nanoparticles supported on the Metal–Organic framework (MOF)–Derived metal oxides (γ-Fe2O3/CuO) nanocomposite as a reusable heterogeneous nanocatalyst and nanophotocatalyst

    , Article Materials Chemistry and Physics ; Volume 261 , 2021 ; 02540584 (ISSN) Gholizadeh Khasevani, S ; Taheri, M ; Gholami, M. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The heterogeneous environmentally friendly catalyst and photocatalyst based on Ag, Pt, Ag–Pt nanoparticles (NPs) loading on the γ-Fe2O3/CuO nanocomposite which was derived from Fe-metal organic framework (Fe-MIL-88B) and Cu-metal organic framework (Cu (tpa)) was introduced. The catalytic and photocatalytic activities of Ag–Pt loading on the γ-Fe2O3/CuO nanocomposite were performed for a reduction process (4-nitrophenol (4-Nip) to 4-aminophenol (4-Amp)), and decomposition organic dyes (AB92, MB) in the LED light. Metal-organic framework (MOFs) composed with inorganic and organic linker which used as suitable precursors to obtain different type of nanostructures for environmental applications.... 

    Constructing BiVO4/Graphene/TiO2 nanocomposite photoanode for photoelectrochemical conversion applications

    , Article Journal of Electroanalytical Chemistry ; Volume 763 , 2016 , Pages 1-9 ; 15726657 (ISSN) Yousefzadeh, S ; Faraji, M ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    BiVO4/Graphene/TiO2 as a novel nanocomposite photoanode was designed, synthesized and characterized for photoelectrochemical application. BiVO4/Graphene nanocomposite was initially synthesized by photocatalytic process and then, BiVO4/Graphene/TiO2 nanocomposite thin film was prepared by deposition of the BiVO4/Graphene solution onto the surface of sol-gel derived TiO2 thin film. Morphology, crystal structure, surface chemical composition and optical properties of the synthesized BiVO4/Graphene/TiO2 nanocomposite thin film were characterized and compared with the BiVO4/Graphene and pure TiO2 samples. Observations of scanning electron microscopy (SEM) images revealed that the surface of the... 

    A computational investigation on the influence of different π spacer groups in the bithiazole-based organic dye sensitizers on the short-circuit photocurrent densities of dye-sensitized solar cells

    , Article Journal of Photochemistry and Photobiology A: Chemistry ; Volume 333 , 2017 , Pages 70-78 ; 10106030 (ISSN) Hosseinzadeh, E ; Hadipour, N. L ; Parsafar, G ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    A series of experimentally synthesized metal free organic dyes based on the 2-Cyano-3-(5-(5'-(4-(diphenylamino)phenyl)-4,4'-dihexyl-2,2'-bithiazol-5-yl)thiophen-2-yl)acrylic acid (dye 1) were investigated, based on computational methods to shed light on how a tiny difference in π-linker of sensitizer, C[tbnd]C and thiophene moiety as the additional π spacer group in dyes 2 and 3 respectively, has a significant impact on the short-circuit photocurrent densities (JSC) in Dye-sensitized solar cells (DSSCs). Although dyes 2 and 3 have similar redshifts in comparison to dye 1 in the UV–vis absorption spectra, there is a significant difference between JSC values of these dyes resulting in... 

    RGO-α-Fe2O3/β-FeOOH ternary heterostructure with urchin-like morphology for efficient oxygen evolution reaction

    , Article Journal of Electroanalytical Chemistry ; Volume 843 , 2019 , Pages 1-11 ; 15726657 (ISSN) Bazri, B ; Kowsari, E ; Seifvand, N ; Naseri, N ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    RGO-α-Fe2O3/β-FeOOH ternary heterostructure composite has been developed as an active photocatalyst for photoelectrochemical water splitting. RGO-α-Fe2O3/β-FeOOH has been successfully synthesized through one-pot hydrothermal-ionic liquid assisted route using tetrabutyl ammonium L-methioninate [TBA][L-Met]and graphene oxide (GO). The electrochemical studies were carried out to demonstrate the oxygen evolution reaction (OER)and photocatalytic activities. The overpotential reduction by rGO-α-Fe2O3/β-FeOOH sample was higher than the nanobean α-Fe2O3/β-FeOOH and pristine α-Fe2O3 samples. The photocurrent density enhanced for rGO-α-Fe2O3/β–FeOOH urchin-like structure and obtained as 0.62 mA·cm−2.... 

    Combustion synthesis of g-C3N4/Fe2O3 nanocomposite for superior photoelectrochemical catalytic performance

    , Article Applied Surface Science ; Volume 534 , 2020 Ghane, N ; Sadrnezhaad, S. K ; Hosseini H., S. M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The g-C3N4/Fe2O3 nanocomposite was produced by the solution combustion synthesis (SCS) of iron-nitrate/g-C3N4 mixtures of varying concentration ratios and using urea as a fuel. The following methods did characterization of the products: X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller investigation (BET), ultraviolet–visible light analysis (UV–vis) and photoluminescence measurement (PL). Effect of iron nitrate on stability and photocurrent density under simulated visible-light irradiation was determined. The... 

    Newly designed ternary hematite-based heterojunction for PEC water splitting

    , Article Applied Surface Science ; Volume 550 , 2021 ; 01694332 (ISSN) Farhoosh, S ; Eftekharinia, B ; Tayebi, M ; Lee, B. K ; Naseri, N ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Hematite is recognized as a promising photoanode for photoelectrochemical water oxidation to produce solar hydrogen due to its favorable properties. However, the high charge carrier recombination rate due to low electrical conductivity and sluggish oxygen reduction kinetics of pure hematite hinder its photocatalytic activity. This work proposed a new hematite-based heterostructure of Ti-Fe2O3/Fe2TiO5/FeOOH, synthesized through a hydrothermal method. The photoanode morphology was branched nanorods that expanded their surface area and improved charge transfer at the photoanode/electrolyte interface. In a novel and complement modification approach, a thin pseudobrookite interlayer was applied... 

    CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin

    , Article Applied Catalysis B: Environmental ; Volume 285 , 2021 ; 09263373 (ISSN) Moradi, M ; Hasanvandian, F ; Isari, A. A ; Hayati, F ; Kakavandi, B ; Setayesh, S. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this study, both CuO nanoparticles and ZnO nanorods were anchored on thermally-exfoliated g-C3N4 nanosheets (denoted as CZ@T-GCN) via isoelectric point-mediated annealing process as a novel nano-photocatalyst towards degradation of amoxicillin (AMOX). The features of prepared materials were characterized using BET, UV–vis DRS, XRD, FT-IR, XPS, FE-SEM, TEM, EIS and transient photocurrent techniques. These analyses demonstrated the successful formation of heterojunctions between components of CZ@T-GCN nanocomposite, which reflected in significantly increased electron-hole separation and enhanced degradation of AMOX as compared with pure substances. The investigation of influential operative... 

    How CdS nanoparticles can influence TiO2 nanotube arrays in solar energy applications?

    , Article Applied Catalysis B: Environmental ; Volume 162 , January , 2015 , Pages 210-216 ; 09263373 (ISSN) Qorbani, M ; Naseri, N ; Moradlou, O ; Azimirad, R ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, titanium dioxide (TiO2) nanotube array (TNA) films are fabricated via anodization of titanium (Ti) sheet. After annealing, the films consisted of well ordered, vertically oriented TNAs of 125±6nm diameter, 38±3nm wall thickness, and 2.9±0.3μm in length. Cadmium sulfide (CdS) nanoparticles are deposited on the synthesized TNAs by sequential-chemical bath deposition (S-CBD) method with different immersion cycle (n) to produce heterogeneous TNA/CdS-n (n=10, 20 and 30) nanostructures. UV-visible absorption spectra of the samples revealed that the absorption edge of CdS modified TNAs was shifted to a higher wavelength with respect to the pure TNAs indicating band gap reduction of...