Loading...
Search for: physical-chemistry
0.007 seconds
Total 63 records

    Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    , Article Radiation Physics and Chemistry ; Vol. 96 , 2014 , pp. 12-18 ; ISSN: 0969806X Razavi, S. M ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    Abstract
    Poly(lactic acid) (PLA)/poly(vinyl acetate-. co-vinyl alcohol) [P(VAc-. co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-. co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-. co-VA) immiscible... 

    Synthesizing and staining manganese oxide nanoparticles for cytotoxicity and cellular uptake investigation

    , Article Biochimica et Biophysica Acta - General Subjects ; Vol. 1840, Issue. 1 , 2014 , pp. 428-433 ; ISSN: 03044165 Omid, H ; Oghabian, M. A ; Ahmadi, R ; Shahbazi, N ; Hosseini, H. R. M ; Shanehsazzadeh, S ; Zangeneh, R. N ; Sharif University of Technology
    Abstract
    Background For decades, contrast agents have been used to reduce longitudinal (T1) or transverse (T2) relaxation times. High toxicity of gadolinium-based contrast agents leads researchers to new T1 contrast agents. Manganese oxide (MnO) nanoparticle (NP) with the lower peril and good enough signal change ability has been offered as a new possibility for magnetic resonance imaging (MRI). Methods The synthesized NPs were investigated for physicochemical and biological properties by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscope, dynamic light scattering (DLS), inductively coupled plasma, enzyme-linked immunosorbent assay, and 3 T magnetic resonance... 

    Evaluation of the effects of process parameters on granule mean size in a conical high shear granulator using response surface methodology

    , Article Powder Technology ; Volume 237 , 2013 , Pages 186-190 ; 00325910 (ISSN) Ranjbarian, S ; Farhadi, F ; Sharif University of Technology
    2013
    Abstract
    Response surface methodology was used to investigate the effects of operating parameters such as impeller speed, binder mass and granulation time on the average size of granules produced in a lab scale conical high shear granulator. Two quadratic models were proposed to express granule mean size as a function of impeller speed and binder mass as well as impeller speed and granulation time. It was found out that in the studied domain, the influence of each parameter on granule size differs from one another. While increasing binder mass at constant quantity of powder increased the average size linearly, increasing impeller speed changed the mean size in accordance with quadratic trend. The... 

    A molecular dynamics simulation study of nanomechanical properties of asymmetric lipid bilayer

    , Article Journal of Membrane Biology ; Volume 246, Issue 1 , 2013 , Pages 67-73 ; 00222631 (ISSN) Maftouni, N ; Amininasab, M ; Vali, M ; Ejtehadi, M ; Kowsari, F ; Sharif University of Technology
    2013
    Abstract
    A very important part of the living cells of biological systems is the lipid membrane. The mechanical properties of this membrane play an important role in biophysical studies. Investigation as to how the insertion of additional phospholipids in one leaflet of a bilayer affects the physical properties of the obtained asymmetric lipid membrane is of recent practical interest. In this work a coarse-grained molecular dynamics simulation was carried out in order to compute the pressure tensor, the lateral pressure, the surface tension and the first moment of lateral pressure in each leaflet of such a bilayer. Our simulations indicate that adding more phospholipids into one monolayer results in... 

    Larval habitats and biodiversity of anopheline mosquitoes (Diptera: Culicidae) in a malarious area of southern Iran

    , Article Journal of Vector Borne Diseases ; Volume 49, Issue 2 , Jun , 2012 , Pages 91-100 ; 09729062 (ISSN) Hanafi-Bojd, A. A ; Vatandoost, H ; Oshaghi, M. A ; Charrahy, Z ; Haghdoost, A. A ; Sedaghat, M. M ; Abedi, F ; Soltani, M ; Raeisi, A ; Sharif University of Technology
    JVBD  2012
    Abstract
    Background & objectives: Malaria is the most important mosquito-borne disease in Iran. It is endemic in south to southeastern part of the country. Knowledge about bio-ecology of vectors will support authorities for appropriate management of the disease. Bashagard district is one of the main endemic areas for malaria in south of Iran. This study was conducted to determine anopheline fauna, diversity and affinity in the area, characterization of larval habitats, and mapping their potential distribution across the district. Methods: The potential aquatic habitats for Anopheles larvae were extracted from Indian Remote Sensing Satellite (IRS) image and digital elevation model of the area using... 

    In situ forming interpenetrating hydrogels of hyaluronic acid hybridized with iron oxide nanoparticles

    , Article Biomaterials Science ; Volume 3, Issue 11 , Aug , 2015 , Pages 1466-1474 ; 20474830 (ISSN) Kheirabadi, M ; Shi, L ; Bagheri, R ; Kabiri, K ; Hilborn, J ; Ossipov, D. A ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Four derivatives of hyaluronic acid (HA) bearing thiol (HA-SH), hydrazide (HA-hy), 2-dithiopyridyl (HA-SSPy), and aldehyde groups (HA-al) respectively were synthesized. Thiol and 2-dithiopyridyl as well as hydrazide and aldehyde make up two chemically orthogonal pairs of chemo-selective functionalities that allow in situ formation of interpenetrating (IPN) disulfide and hydrazone networks simultaneously upon the mixing of the above derivatives at once. The formation of IPN was demonstrated by comparing it with the formulations of the same total HA concentration but lacking one of the reactive components. The hydrogel composed of all four components was characterized by a larger elastic... 

    Nanomedicine applications in orthopedic medicine: State of the art

    , Article International Journal of Nanomedicine ; Volume 10 , 2015 , Pages 6039-6054 ; 11769114 (ISSN) Mazaheri, M ; Eslahi, N ; Ordikhani, F ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    Dove Medical Press Ltd  2015
    Abstract
    The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions... 

    Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol

    , Article Journal of Nanoparticle Research ; Volume 17, Issue 1 , January , 2015 ; 13880764 (ISSN) Tavakoli, M. M ; Tayyebi, A ; Simchi, A ; Aashuri, H ; Outokesh, M ; Fan, Z ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Recently, hybrid graphene–quantum dot systems have attracted increasing attention for the next-generation optoelectronic devices such as ultrafast photo-detectors and solar energy harvesting. In this paper, a novel, one-step, reproducible, and solution-processed method is introduced to prepare hybrid graphene–PbS colloids by employing supercritical ethanol. In the hybrid nanocomposite, PbS quantum dots (~3 nm) are decorated on the reduced graphene oxide (rGO) nanosheets (~1 nm thickness and less than 1 micron lengths). By employing X-ray photoelectron and Raman and infrared spectroscopy techniques, it is shown that the rGO nanosheets are bonded to PbS nanocrystals through carboxylic bonds.... 

    Efficient and green oxidative degradation of methylene blue using Mn-doped ZnO nanoparticles (Zn1−xMnxO)

    , Article Journal of Experimental Nanoscience ; Volume 10, Issue 16 , 2015 , Pages 1256-1268 ; 17458080 (ISSN) Khaksar, M ; Amini, M ; Boghaei, D. M ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    Mn-doped ZnO nanoparticles, Zn1−xMnxO, were synthesised by a polyethylene glycol (PEG) sol–gel method and the physicochemical properties of compounds were characterised by atomic absorption spectroscopy (AAS), energy-dispersive X-ray analysis, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The catalytic degradation of an organic dye, methylene blue (MB), in the presence of Zn1−xMnxO as the catalyst and hydrogen peroxide (H2O2) as the oxidant at room temperature in water has been studied. Effects of oxidant, catalyst amount, catalyst composition, pH value of the solution and an OH-radical... 

    Microfluidic systems for stem cell-based neural tissue engineering

    , Article Lab on a Chip - Miniaturisation for Chemistry and Biology ; Volume 16, Issue 14 , 2016 , Pages 2551-2571 ; 14730197 (ISSN) Karimi, M ; Bahrami, S ; Mirshekari, H ; Moosavi Basri, S. M ; Bakhshian Nik, A ; Aref, A. R ; Akbari, M ; Hamblin, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise... 

    Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review

    , Article Biomedicine and Pharmacotherapy ; Volume 87 , 2017 , Pages 209-222 ; 07533322 (ISSN) Namdari, P ; Negahdari, B ; Eatemadi, A ; Sharif University of Technology
    Elsevier Masson SAS  2017
    Abstract
    Carbon-based quantum dots (CQDs) are a newly developed class of carbon nano-materials that have attracted much interest and attention as promising competitors to already available semiconductor quantum dots owing to their un-comparable and unique properties. In addition, controllability of CQDs unique physiochemical properties is as a result of their surface passivation and functionalization. This is an update article (between 2013 and 2016) on the recent progress, characteristics and synthesis methods of CQDs and different advantages in varieties of applications. © 2017 Elsevier Masson SAS  

    Polyamide membrane surface and bulk modification using humid environment as a new heat curing medium

    , Article Journal of Membrane Science ; Volume 523 , 2017 , Pages 129-137 ; 03767388 (ISSN) Karimi, H ; Bazgar Bajestani, M ; Mousavi, S. A ; Mokhtari Garakani, R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Heat curing was devised in temperature-controlled steam and water environments to synthesize reverse osmosis (RO) polyamide (PA) membrane. The effect of new curing media on the physicochemical properties and RO performance of the synthesized polyamides was fully investigated using X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and water drop contact angle. The results show a reduction in amide linkage content on the surface of the steam-cured polyamide and surface and bulk of the water-cured polyamide. Additionally, it was revealed that heat curing in the humidity-controlled environment... 

    Development of kinetic model for CO hydrogenation reaction over supported Fe-Co-Mn catalyst

    , Article New Journal of Chemistry ; Volume 41, Issue 18 , 2017 , Pages 10452-10466 ; 11440546 (ISSN) Arsalanfar, M ; Abdouss, M ; Mirzaei, N ; Zamani, Y ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Kinetic modeling of CO hydrogenation over Fe-Co-Mn catalyst was investigated; a ternary catalyst was prepared using incipient wetness impregnation. The kinetic parameters were determined from experiments carried out in a fixed bed micro-reactor under the following process conditions: T = 523.15-533.15 K, P = 1-10 bar, H2/CO = 1/1-3/1 and space velocity = 4500 h-1. Seventeen rate expressions were derived from five different mechanisms according to Langmuir-Hinshelwood-Hougen-Watson (LHHW) and Eley-Rideal (ER) mechanisms and were tested against the experimental data. Non-linear regression method was used to estimate different kinetic parameters; according to the obtained experimental results... 

    کلیدواژه های تکراریCurcumin loading potentiates the neuroprotective efficacy of Fe3O4 magnetic nanoparticles in cerebellum cells of schizophrenic rats

    , Article Biomedicine and Pharmacotherapy ; Volume 108 , 2018 , Pages 1244-1252 ; 07533322 (ISSN) Naserzadeh, P ; Ashrafi Hafez, A ; Abdorahim, M ; Abdollahifar, M. A ; Shabani, R ; Peirovi, H ; Simchi, A ; Ashtari, K ; Sharif University of Technology
    Abstract
    Background: The aim of this study was to investigate the neurotoxic effects of Fe3O4 magnetic- CurNPs on isolated schizophrenia mitochondria of rats as an in vivo model. Methods: We designed CMN loaded superparamagnetic iron oxide nanoparticles (SPIONs) (Fe3O4 magnetic- CurNPs) to achieve an enhanced therapeutic effect. The physicochemical properties of Fe3O4 magnetic- CurNPs were characterized using X-ray diffraction (XRD), and dynamic laser light scattering (DLS) and zeta potential. Further, to prove Fe3O4 magnetic- CurNPs results in superior therapeutic effects, and also, the mitochondrial membrane potential collapse, mitochondrial complex II activity, reactive oxygen species generation,... 

    Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 46, Issue 7 , 2018 , Pages 1314-1330 ; 21691401 (ISSN) Samadishadlou, M ; Farshbaf, M ; Annabi, N ; Kavetskyy, T ; Khalilov, R ; Saghfi, S ; Akbarzadeh, A ; Mousavi, S ; Sharif University of Technology
    Abstract
    Magnetic carbon nanotubes (MCNTs) have been widely studied for their potential applications in medicine, diagnosis, cell biology, analytical chemistry, and environmental technology. Introduction of MCNTs paved the way for the emergence of new approaches in nanobiotechnology and biomedicine as a result of their multifarious properties embedded within either the carbon nanotubes (CNTs) or magnetic parts. Numerous preparation techniques exists for functionalizing CNTs with magnetic nanoparticles, and these versatile strategies lay the ground for the generation of novel and versatile systems which are applicable to many industries and biological areas. Here, we review and discuss the recent... 

    Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 46, Issue 7 , 2018 , Pages 1402-1414 ; 21691401 (ISSN) Khodabakhsh, F ; Norouzian, D ; Vaziri, B ; Ahangari Cohan, R ; Sardari, S ; Mahboudi, F ; Behdani, M ; Mansouri, K ; Mehdizadeh, A ; Sharif University of Technology
    Abstract
    Since physiological and pathological processes occur at nano-environments, nanotechnology has considered as an efficient tool for designing of next generation specific biomolecules with enhanced pharmacodynamic and pharmacodynamic properties. In the current investigation, by control of the size and hydrodynamic volume at the nanoscale, for the first time, physicochemical and pharmacokinetic properties of an anti-VEGFA nanobody was remarkably improved by attachment of a Proline-Alanine-Serine (PAS) rich sequence. The results elucidated unexpected impressive effects of PAS sequence on physicochemical properties especially on size, hydrodynamics radius, and even solubility of nanobody. CD... 

    Effect of graphene oxide nanosheets on visible light-assisted antibacterial activity of vertically-aligned copper oxide nanowire arrays

    , Article Journal of Colloid and Interface Science ; Volume 521 , 2018 , Pages 119-131 ; 00219797 (ISSN) Kiani, F ; Ashari Astani, N ; Rahighi, R ; Tayyebi, A ; Tayebi, M ; Khezri, J ; Hashemi, E ; Rothlisberger, U ; Simchi, A ; Sharif University of Technology
    Academic Press Inc  2018
    Abstract
    In the present work, the effect of graphene oxide (GO) nanosheets on the antibacterial activity of CuO nanowire arrays under visible light irradiation is shown. A combined thermal oxidation/electrophoretic deposition technique was employed to prepare three-dimensional networks of graphene oxide nanosheets hybridized with vertically aligned CuO nanowires. With the help of standard antibacterial assays and X-ray photoelectron spectroscopy, it is shown that the light-activated antibacterial response of the hybrid material against gram-negative Escherichia coli is significantly improved as the oxide functional groups of the GO nanosheets are reduced. In order to explore the physicochemical... 

    Pyromellitic dianhydride crosslinked cyclodextrin nanosponges for curcumin controlled release; formulation, physicochemical characterization and cytotoxicity investigations

    , Article Journal of Microencapsulation ; Volume 36, Issue 8 , 2019 , Pages 715-727 ; 02652048 (ISSN) Rafati, N ; Zarrabi, A ; Caldera, F ; Trotta, F ; Ghias, N ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Aim: In this study, a nanosponge structure was synthesised with capability of encapsulating curcumin as a model polyphenolic compound and one of the herbal remedies that have widely been considered due to its ability to treat cancer. Methods: FTIR, DSC and XRD techniques were performed to confirm the formation of the inclusion complex of the nanosponge-drug. Results: DSC and XRD patterns showed an increasing stability and a decreasing crystallinity of curcumin after formation of inclusion complex. Encapsulation efficiency was 98% (w/w) and a significant increase was observed in loading capacity (184% w/w). The results of cytotoxicity assessments demonstrated no cell toxicity on the healthy... 

    Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes

    , Article International Journal of Pharmaceutics ; Volume 569 , 2019 ; 03785173 (ISSN) Ghafelehbashi, R ; Akbarzadeh, I ; Tavakkoli Yaraki, M ; Lajevardi, A ; Fatemizadeh, M ; Heidarpoor Saremi, L ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, optimized cephalexin-loaded niosomal formulations based on span 60 and tween 60 were prepared as a promising drug carrier system. The niosomal formulations were characterized using a series of techniques such as scanning electron microscopy, Fourier transformed infrared spectroscopy, dynamic light scattering, and zeta potential measurement. The size and drug encapsulation efficiency are determined by the type and composition of surfactant. The developed niosomal formulations showed great storage stability up to 30 days with low change in size and drug entrapment during the storage, making them potential candidates for real applications. Moreover, the prepared niosomes showed... 

    Generic extraction medium: From highly polar to non-polar simultaneous determination

    , Article Analytica Chimica Acta ; Volume 1066 , 2019 , Pages 1-12 ; 00032670 (ISSN) Zeinali, S ; Khalilzadeh, M ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Sample preparation for non-target analysis is challenging due to the difficulty in the extraction of polar and non-polar analytes simultaneously. Most commercial solid sorbents lack the proper comprehensiveness for extraction of analytes with different physiochemical properties. A possible key is the combination of hydrophobic polymer and hydrophilic surface functional groups in solid based extraction methods in order to generate the susceptibility for retaining both polar and non-polar analytes. To pursue this goal, in this study, four polar groups including [sbnd]NH 2 , [sbnd]NO 2 , [sbnd]COOH, and [sbnd]COCH 3 were chemically bound to Amberlite XAD-4 substrate in order to prepare a...