Loading...
Search for: physical-chemistry
0.006 seconds
Total 63 records

    Efficient and green oxidative degradation of methylene blue using Mn-doped ZnO nanoparticles (Zn1−xMnxO)

    , Article Journal of Experimental Nanoscience ; Volume 10, Issue 16 , 2015 , Pages 1256-1268 ; 17458080 (ISSN) Khaksar, M ; Amini, M ; Boghaei, D. M ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    Mn-doped ZnO nanoparticles, Zn1−xMnxO, were synthesised by a polyethylene glycol (PEG) sol–gel method and the physicochemical properties of compounds were characterised by atomic absorption spectroscopy (AAS), energy-dispersive X-ray analysis, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The catalytic degradation of an organic dye, methylene blue (MB), in the presence of Zn1−xMnxO as the catalyst and hydrogen peroxide (H2O2) as the oxidant at room temperature in water has been studied. Effects of oxidant, catalyst amount, catalyst composition, pH value of the solution and an OH-radical... 

    Pyromellitic dianhydride crosslinked cyclodextrin nanosponges for curcumin controlled release; formulation, physicochemical characterization and cytotoxicity investigations

    , Article Journal of Microencapsulation ; Volume 36, Issue 8 , 2019 , Pages 715-727 ; 02652048 (ISSN) Rafati, N ; Zarrabi, A ; Caldera, F ; Trotta, F ; Ghias, N ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Aim: In this study, a nanosponge structure was synthesised with capability of encapsulating curcumin as a model polyphenolic compound and one of the herbal remedies that have widely been considered due to its ability to treat cancer. Methods: FTIR, DSC and XRD techniques were performed to confirm the formation of the inclusion complex of the nanosponge-drug. Results: DSC and XRD patterns showed an increasing stability and a decreasing crystallinity of curcumin after formation of inclusion complex. Encapsulation efficiency was 98% (w/w) and a significant increase was observed in loading capacity (184% w/w). The results of cytotoxicity assessments demonstrated no cell toxicity on the healthy... 

    Niosomal formulation for antibacterial applications

    , Article Journal of Drug Targeting ; Volume 30, Issue 5 , 2022 , Pages 476-493 ; 1061186X (ISSN) Mehrarya, M ; Gharehchelou, B ; Haghighi Poodeh, S ; Jamshidifar, E ; Karimifard, S ; Farasati Far, B ; Akbarzadeh, I ; Seifalian, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Infection is a disease that is mainly caused by different Gram-negative and Gram-positive bacteria. Treatment of infections requires a considerable amount of antibiotics, which can cause serious damage to the patient's body. Delivering the antibiotic only to the site of infection can prevent these destructive effects, such as the destruction of the normal intestinal flora. The drug delivery system through carriers will take antibiotics into a part of the body involved in the disease. Niosome nanoparticles, which have been made from non-ionic surfactants, have been emerging as ideal drug/antibiotics delivery vehicles. Recently, niosome formulations have been targeted to reduce toxicity and... 

    Design and physicochemical characterization of lysozyme loaded niosomal formulations as a new controlled delivery system

    , Article Pharmaceutical Chemistry Journal ; Volume 53, Issue 10 , 2020 , Pages 921-930 Sadeghi, S ; Ehsani, P ; Cohan, R. A ; Sardari, S ; Akbarzadeh, I ; Bakhshandeh, H ; Norouzian, D ; Sharif University of Technology
    Springer  2020
    Abstract
    Lysozyme loaded niosomes containing various molar ratios of two kinds of surfactants were prepared and the properties of these niosomal formulations were studied. The results revealed that the size of niosomes varied between 240.06 ± 32.41 and 895.2 ± 20.84 nm. Formulations with the lowest size and no precipitation had entrapment efficiencies ranging from 60.644 ± 3.310 to 66.333 ± 1.98%. Their controlled release profiles after 48 h were 15.67, 20.67 and 31.50%. After 2 months, the most stable formulation in terms of size, PDI, zeta potential, and entrapment efficiency was used to study the secondary structures of lysozyme in niosomal and free forms. Lysozyme loaded niosome and lysozyme... 

    Simvastatin-loaded nano-niosomes confer cardioprotection against myocardial ischemia/reperfusion injury

    , Article Drug Delivery and Translational Research ; Volume 12, Issue 6 , 2022 , Pages 1423-1432 ; 2190393X (ISSN) Naseroleslami, M ; Mousavi Niri , N ; Akbarzade, I ; Sharifi, M ; Aboutaleb, N ; Sharif University of Technology
    Springer  2022
    Abstract
    Although simvastatin (SIM) has been proven to be a powerful agent against myocardial ischemia/reperfusion (MI/R) injury, poor water solubility, short half-life, and low bioavailability have made it futile while using conventional drug delivery system. Hence, this study aims to investigate therapeutic efficacy of SIM-loaded nano-niosomes on MI/R injury. Surface active agent film hydration method was used to synthesize nano-niosomes. The physicochemical properties of nano-niosomes were characterized using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Moreover, niosomes were characterized in entrapment efficiency (EE) and releasing pattern. Male Wistar rats were... 

    In situ forming interpenetrating hydrogels of hyaluronic acid hybridized with iron oxide nanoparticles

    , Article Biomaterials Science ; Volume 3, Issue 11 , Aug , 2015 , Pages 1466-1474 ; 20474830 (ISSN) Kheirabadi, M ; Shi, L ; Bagheri, R ; Kabiri, K ; Hilborn, J ; Ossipov, D. A ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Four derivatives of hyaluronic acid (HA) bearing thiol (HA-SH), hydrazide (HA-hy), 2-dithiopyridyl (HA-SSPy), and aldehyde groups (HA-al) respectively were synthesized. Thiol and 2-dithiopyridyl as well as hydrazide and aldehyde make up two chemically orthogonal pairs of chemo-selective functionalities that allow in situ formation of interpenetrating (IPN) disulfide and hydrazone networks simultaneously upon the mixing of the above derivatives at once. The formation of IPN was demonstrated by comparing it with the formulations of the same total HA concentration but lacking one of the reactive components. The hydrogel composed of all four components was characterized by a larger elastic... 

    Microfluidic systems for stem cell-based neural tissue engineering

    , Article Lab on a Chip - Miniaturisation for Chemistry and Biology ; Volume 16, Issue 14 , 2016 , Pages 2551-2571 ; 14730197 (ISSN) Karimi, M ; Bahrami, S ; Mirshekari, H ; Moosavi Basri, S. M ; Bakhshian Nik, A ; Aref, A. R ; Akbari, M ; Hamblin, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise... 

    Development of kinetic model for CO hydrogenation reaction over supported Fe-Co-Mn catalyst

    , Article New Journal of Chemistry ; Volume 41, Issue 18 , 2017 , Pages 10452-10466 ; 11440546 (ISSN) Arsalanfar, M ; Abdouss, M ; Mirzaei, N ; Zamani, Y ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Kinetic modeling of CO hydrogenation over Fe-Co-Mn catalyst was investigated; a ternary catalyst was prepared using incipient wetness impregnation. The kinetic parameters were determined from experiments carried out in a fixed bed micro-reactor under the following process conditions: T = 523.15-533.15 K, P = 1-10 bar, H2/CO = 1/1-3/1 and space velocity = 4500 h-1. Seventeen rate expressions were derived from five different mechanisms according to Langmuir-Hinshelwood-Hougen-Watson (LHHW) and Eley-Rideal (ER) mechanisms and were tested against the experimental data. Non-linear regression method was used to estimate different kinetic parameters; according to the obtained experimental results... 

    Light olefin production on the Co-Ni catalyst: Calcination conditions, and modeling and optimization of the process conditions by a statistical method

    , Article New Journal of Chemistry ; Volume 44, Issue 18 , 2020 , Pages 7467-7483 Arsalanfar, M ; Akbari, M ; Mirzaei, N ; Abdouss, M ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    The present work is comprised of two main parts. In part 1 the Co-Ni/γ-Al2O3 catalyst was prepared using a sol-gel procedure. Then the effect of calcination variables including the calcination temperature and time on the catalytic performance for production of light olefins was investigated and optimized. The obtained results have shown that the catalyst which was calcined at 550 °C for 6 h has revealed the better catalytic performance for production of light olefins. In part 2 the effect of process conditions including the reaction temperature, H2/CO feed ratio and total reaction pressure on the catalytic performance (CO conversion%, (C2-C4) selectivity% and C5+ selectivity%) was... 

    Biomimetic proteoglycan nanoparticles for growth factor immobilization and delivery

    , Article Biomaterials Science ; Volume 8, Issue 4 , 2020 , Pages 1127-1136 Zandi, N ; Mostafavi, E ; Shokrgozar, M. A ; Tamjid, E ; Webster, T. J ; Annabi, N ; Simchi, A ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    The delivery of growth factors is often challenging due to their short half-life, low stability, and rapid deactivation. In native tissues, the sulfated residual of glycosaminoglycan (GAG) polymer chains of proteoglycans immobilizes growth factors through the proteoglycans'/proteins' complexation with nanoscale organization. These biological assemblies can influence growth factor-cell surface receptor interactions, cell differentiation, cell-cell signaling, and mechanical properties of the tissues. Here, we introduce a facile procedure to prepare novel biomimetic proteoglycan nanocarriers, based on naturally derived polymers, for the immobilization and controlled release of growth factors.... 

    Current scenario of the tehran municipal solid waste handling rules towards green technology

    , Article International Journal of Environmental Research and Public Health ; Volume 16, Issue 6 , 2019 ; 16617827 (ISSN) Rupani, P. F ; Maleki Delarestaghi, R ; Asadi, H ; Rezania, S ; Park, J ; Abbaspour, M ; Shao, W ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    This study aims to study the waste management process and recycling of municipal waste in Tehran. Currently, Kahrizak is the defined landfill area which collects the waste generated from 22 districts of Tehran. The organic wastes undergo to the windrow composting method in order to manage the partial of the waste generated in the city. Samples from the compost pile generated in Kahrizak were examined to evaluate its fertilizer value to be used further by the farmers. The results show that the obtained compost does not reach the acceptable quality to be used further in agriculture, due to lack of homogeneity, aeration and presence of heavy metals. Overall, it has been concluded that, due to... 

    Effect of physico-chemical properties of nanoparticles on their intracellular uptake

    , Article International Journal of Molecular Sciences ; Volume 21, Issue 21 , 2020 , Pages 1-20 Sabourian, P ; Yazdani, G ; Ashraf, S. S ; Frounchi, M ; Mashayekhan, S ; Kiani, S ; Kakkar, A ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Cellular internalization of inorganic, lipidic and polymeric nanoparticles is of great significance in the quest to develop effective formulations for the treatment of high morbidity rate diseases. Understanding nanoparticle–cell interactions plays a key role in therapeutic interventions, and it continues to be a topic of great interest to both chemists and biologists. The mechanistic evaluation of cellular uptake is quite complex and is continuously being aided by the design of nanocarriers with desired physico-chemical properties. The progress in biomedicine, including enhancing the rate of uptake by the cells, is being made through the development of structure–property relationships in... 

    Porphyrin molecules decorated on metal–organic frameworks for multi-functional biomedical applications

    , Article Biomolecules ; Volume 11, Issue 11 , 2021 ; 2218273X (ISSN) Rabiee, N ; Rabiee, M ; Sojdeh, S ; Fatahi, Y ; Dinarvand, R ; Safarkhani, M ; Ahmadi, S ; Daneshgar, H ; Radmanesh, F ; Maghsoudi, S ; Bagherzadeh, M ; Varma, R. S ; Mostafavi, E ; Sharif University of Technology
    MDPI  2021
    Abstract
    Metal–organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin’ nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical... 

    Gold nanorods for drug and gene delivery: An overview of recent advancements

    , Article Pharmaceutics ; Volume 14, Issue 3 , 2022 ; 19994923 (ISSN) Jahangiri Manesh, A ; Mousazadeh, M ; Taji, S ; Bahmani, A ; Zarepour, A ; Zarrabi, A ; Sharifi, E ; Azimzadeh, M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Over the past few decades, gold nanomaterials have shown great promise in the field of nanotechnology, especially in medical and biological applications. They have become the most used nanomaterials in those fields due to their several advantageous. However, rod-shaped gold nanoparticles, or gold nanorods (GNRs), have some more unique physical, optical, and chemical properties, making them proper candidates for biomedical applications including drug/gene delivery, photothermal/photodynamic therapy, and theranostics. Most of their therapeutic applications are based on their ability for tunable heat generation upon exposure to near-infrared (NIR) radiation, which is helpful in both... 

    Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol

    , Article Journal of Nanoparticle Research ; Volume 17, Issue 1 , January , 2015 ; 13880764 (ISSN) Tavakoli, M. M ; Tayyebi, A ; Simchi, A ; Aashuri, H ; Outokesh, M ; Fan, Z ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Recently, hybrid graphene–quantum dot systems have attracted increasing attention for the next-generation optoelectronic devices such as ultrafast photo-detectors and solar energy harvesting. In this paper, a novel, one-step, reproducible, and solution-processed method is introduced to prepare hybrid graphene–PbS colloids by employing supercritical ethanol. In the hybrid nanocomposite, PbS quantum dots (~3 nm) are decorated on the reduced graphene oxide (rGO) nanosheets (~1 nm thickness and less than 1 micron lengths). By employing X-ray photoelectron and Raman and infrared spectroscopy techniques, it is shown that the rGO nanosheets are bonded to PbS nanocrystals through carboxylic bonds.... 

    Larval habitats and biodiversity of anopheline mosquitoes (Diptera: Culicidae) in a malarious area of southern Iran

    , Article Journal of Vector Borne Diseases ; Volume 49, Issue 2 , Jun , 2012 , Pages 91-100 ; 09729062 (ISSN) Hanafi-Bojd, A. A ; Vatandoost, H ; Oshaghi, M. A ; Charrahy, Z ; Haghdoost, A. A ; Sedaghat, M. M ; Abedi, F ; Soltani, M ; Raeisi, A ; Sharif University of Technology
    JVBD  2012
    Abstract
    Background & objectives: Malaria is the most important mosquito-borne disease in Iran. It is endemic in south to southeastern part of the country. Knowledge about bio-ecology of vectors will support authorities for appropriate management of the disease. Bashagard district is one of the main endemic areas for malaria in south of Iran. This study was conducted to determine anopheline fauna, diversity and affinity in the area, characterization of larval habitats, and mapping their potential distribution across the district. Methods: The potential aquatic habitats for Anopheles larvae were extracted from Indian Remote Sensing Satellite (IRS) image and digital elevation model of the area using... 

    Poly-L-lysine/hyaluronan nanocarriers as a novel nanosystem for gene delivery

    , Article Journal of Microscopy ; Volume 287, Issue 1 , 2022 , Pages 32-44 ; 00222720 (ISSN) Souri, M ; Bagherzadeh, M. A ; Mofazzal Jahromi, M. A ; Mohammad-Beigi, H ; Abdoli, A ; Mir, H ; Roustazadeh, A ; Pirestani, M ; Sahandi Zangabad, P ; Kiani, J ; Bakhshayesh, A ; Jahani, M ; Joghataei, M. T ; Karimi, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The present research comes up with a novel DNA-loaded poly-L-lysine (PLL)/hyaluronan (HA) nanocarrier (DNA-loaded PLL/HA NCs) for gene delivery applications, as a promising candidate for gene delivery into diverse cells. A straightforward approach was employed to prepare such a nanosystem through masking DNA-loaded PLL molecules by HA. Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were used to analyse the interaction of the molecules as well as the physicochemical properties of the NCs. The NCs showed a negative charge of –24 ± 3 mV, with an average size of 138 ±... 

    Cold atmospheric plasma modification and electrical conductivity induction in gelatin/polyvinylidene fluoride nanofibers for neural tissue engineering

    , Article Artificial Organs ; Volume 46, Issue 8 , 2022 , Pages 1504-1521 ; 0160564X (ISSN) Sahrayi, H ; Hosseini, E ; Ramazani Saadatabadi, A ; Atyabi, S ; Bakhshandeh, H ; Mohamadali, M ; Aidun, A ; Farasati Far, B ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Background: This research follows some investigations through neural tissue engineering, including fabrication, surface treatment, and evaluation of novel self-stimuli conductive biocompatible and degradable nanocomposite scaffolds. Methods: Gelatin as a biobased material and polyvinylidene fluoride (PVDF) as a mechanical, electrical, and piezoelectric improvement agent were co-electrospun. In addition, polyaniline/graphene (PAG) nanoparticles were synthesized and added to gelatin solutions in different percentages to induce electrical conductivity. After obtaining optimum PAG percentage, cold atmospheric plasma (CAP) treatment was applied over the best samples by different plasma variable... 

    Novel one-pot synthesis of functionalized quinolines from isocyanides, aniline, and acetylene dicarboxylate via cu-catalyzed intramolecular C─H activation reactions

    , Article Journal of Heterocyclic Chemistry ; Volume 56, Issue 4 , 2019 , Pages 1254-1259 ; 0022152X (ISSN) Nematpour, M ; Rezaee, E ; Jahani, M ; Tabatabai, S. A ; Sharif University of Technology
    HeteroCorporation  2019
    Abstract
    The one-pot synthesis of a novel class of substituted quinoline derivatives with good yields is achieved via the Cu-catalyzed intramolecular C─H activation reaction between isocyanides, aniline, and acetylene dicarboxylate in MeCN at room temperature. The existence of one-pot conditions, availability of a starting material-catalyst, the absence of column chromatography, and a high yield of products are among the advantages of this method. The structures are confirmed spectroscopically (1H NMR and 13C NMR, IR, and EI-MS) and through elemental analyses  

    Regio- and diastereoselective synthesis of novel polycyclic pyrrolo[2,1- a]isoquinolines bearing indeno[1,2- b]quinoxaline moieties by a three-component [3+2]-cycloaddition reaction

    , Article Synlett ; Volume 31, Issue 3 , 2020 , Pages 267-271 Matloubi Moghaddam, F ; Moafi, A ; Jafari, B ; Vilinger, A ; Langer, P ; Sharif University of Technology
    Georg Thieme Verlag  2020
    Abstract
    A regio- and diastereoselective synthesis of 2,3-dihydro-10b′ H -spiro[indeno[1,2- b ]quinoxaline-11,1′-pyrrolo[2,1- a ]isoquinoline]-2′,3′-diylbis(phenylmethanone) derivatives containing four contiguous chiral stereocenters was achieved through 1,3-dipolar cycloaddition of isoquinolinium N -ylides in a one-pot three-component reaction. The desired products were obtained in short reaction times and in moderate to high yields (up to 92%) under relatively mild reaction conditions. The structure and relative stereochemistry of the desired product was confirmed by X-ray diffraction analysis. © 2020 Georg Thieme Verlag. All rights reserved