Loading...
Search for: piles
0.014 seconds
Total 123 records

    Thermal performance analysis of an energy pile with triple helix ground heat exchanger

    , Article Geothermics ; Volume 104 , 2022 ; 03756505 (ISSN) Farajollahi, A. H ; Asgari, B ; Rostami, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A Ground Source Heat Pump (GSHP) is a renewable energy-based HVAC system that extracts or supplies heat from/to the ground via a Ground Heat Exchanger (GHE). One of the most commonly used types of GHE in GSHP systems is the energy pile. In this realm, the GSHP system with a triple helix energy pile has become the focus of attention. To this aim, a comprehensive three-dimensional transient Computational Fluid Dynamics model of the energy pile with triple helix GHE and the surrounding soil is developed. The effect of several parameters, including helix pitch, helix diameter and pipe diameter, on the thermal performance of the system, is investigated. Simulated cases are chosen using the design... 

    Microstructure, fractography, and mechanical properties of hardox 500 steel tig-welded joints by using different filler weld wires

    , Article Materials ; Volume 15, Issue 22 , 2022 ; 19961944 (ISSN) Zuo, Z ; Haowei, M ; Yarigarravesh, M ; Assari, A. H ; Tayyebi, M ; Tayebi, M ; Hamawandi, B ; Sharif University of Technology
    MDPI  2022
    Abstract
    This paper deals with the effects of three low-carbon steel filler metals consisting of ferritic and austenitic phases on the weld joints of the tungsten inert gas (TIG) welding of Hardox 500 steel. The correlation between the microstructure and mechanical properties of the weld joints was investigated. For this purpose, macro and microstructure were examined, and then microhardness, tensile, impact, and fracture toughness tests were carried out to analyze the mechanical properties of joints. The results of optical microscopy (OM) images showed that the weld zones (WZ) of all three welds were composed of different ferritic morphologies, including allotriomorphic ferrite, Widmanstätten... 

    Mechanical properties and γ/γ' interfacial misfit network evolution: A study towards the creep behavior of Ni-based single crystal superalloys

    , Article Mechanics of Materials ; Volume 171 , 2022 ; 01676636 (ISSN) Khoei, A. R ; Youzi, M ; Tolooei Eshlaghi, G ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The aim of this study is to investigate the role of the temperature, stress, and rhenium (Re) on the γ/γ' interfacial misfit dislocation network and mechanical response of Ni-based single crystal superalloys. After aging at elevated temperatures, mismatch between the two phases results in an interfacial dislocation network to relieve the coherency stress. Molecular dynamics (MD) simulations have been performed to study the properties of the (100), (110), and (111) phase interface crystallographic directions. Increasing temperature disperses the atomic potential energy at the interface diminishing the strength and stability of the networks. In the case of loading, when a constant strain rate... 

    On the thermal performance enhancement of spiral-coil energy piles with a thermal recovery system

    , Article Energy and Buildings ; Volume 269 , 2022 ; 03787788 (ISSN) Nazmabadi, R ; Asgari, B ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The pile foundation designed to ensure building stability when equipped with heat exchanger pipes to harvest geothermal energy is called an energy pile. Ground Source Heat Pump (GSHP) systems combined with energy piles have been used and developed as sustainable and efficient HVAC systems. Energy piles suffer from cold or heat accumulation in and around the pile, degrading their long-term performance. The current study seeks to alleviate this problem by proposing a thermal recovery system. The proposed system circulates ambient air in the pile foundation to extract the accumulated heat. A three-dimensional transient computational fluid dynamics model of the GSHP system coupled with the... 

    Seismic displacement ratios for soil-pile-structure systems allowed to uplift

    , Article Soil Dynamics and Earthquake Engineering ; Volume 155 , 2022 ; 02677261 (ISSN) Hamidia, M ; Vafaei, A ; Dolatshahi, K. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, the soil-pile-structure interaction effects on seismic displacement demands are investigated using various dimensionless parameters. The code prescribed procedures for estimating seismic displacement demands are built upon fixed-base structure assumption and neglect the effect of foundation uplift. Tensile index, the ratio of the summation of the tensile strength of all piles to the weight of the structure, is introduced as a novel dimensionless ratio for the seismic assessments. The seismic behavior of the structures with a small tensile index is close to the structures with uplift-allowed shallow foundations. Structures with a large tensile index behave like tied foundation... 

    E ectiveness of a vertical micropile system in mitigating the liquefaction-induced lateral spreading e ects on pile foundations: 1 g large-scale shake table tests

    , Article Scientia Iranica ; Volume 29, Issue 3 A , 2022 , Pages 1038-1058 ; 10263098 (ISSN) Kavand, A ; Haeri, S. M ; Raisianzadeh, J ; Afzalsoltani, S ; Sharif University of Technology
    Sharif University of Technology  2022
    Abstract
    Liquefaction-induced lateral spreading caused severe damages to pile foundations during past earthquakes. Micropiles can be used as a mitigation strategy against lateral spreading e ects on pile foundations. However, the available knowledge about the possible efficiency of this strategy is quite limited. In this regard, the present study aims to evaluate the e ectiveness of a vertical micropile system as a lateral spreading countermeasure using large-scale 1 g shake table tests on 3 x 3 pile groups. The results showed that the micropile system was not able to e ectively reduce the bending moments in piles; however, it considerably reduced the lateral soil pressures exerted on the upslope... 

    Performance of open and in-filled (geofoam) trenches in mitigating ground-borne vibrations induced by impact loading

    , Article International Journal of Pavement Research and Technology ; 2022 ; 19966814 (ISSN) Jazebi, M ; Ahmadi, M. M ; Saberian, M ; Li, J ; Sahebalzamani, P ; Sharif University of Technology
    Springer  2022
    Abstract
    The open or in-filled trenches are often used in engineering practice to mitigate ground vibration induced by different types of vibration sources. A novel approach which is considering the effect of Rayleigh wavelength on the efficiency of open and in-filled trenches coupled with regular specific normalized dimensions was implemented in this study. While impact loading is a very common type of loading (in, e.g., machine foundations, driven pile installation), it was rarely studied in the past. The loading is selected to consist of 12 impact pulses. In this study, it was shown that Rayleigh wavelength controls the effect of trench-normalized dimensions on its performance, and therefore,... 

    Drilled shafts in sand: failure pattern and tip resistance using numerical and analytical approaches

    , Article International Journal of Geotechnical Engineering ; Volume 16, Issue 8 , 2022 , Pages 974-990 ; 19386362 (ISSN) Jazebi, M ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Drilled shafts are one of the most important types of pile foundations. Several researchers have suggested different soil failure patterns for driven piles; however, for drilled shafts, this issue is inadequately addressed in the literature. In this paper, a numerical approach was pursued to obtain the location and dimensions of plastic zones around the tip of drilled shafts. The dependence of the suggested failure pattern size on the soil properties and drilled shaft dimensions was investigated. Based on several analyses, a soil jug-shaped failure pattern around the tip of drilled shafts was proposed, and its dimensions were determined using the regression-based and trial and error... 

    Three-dimensional numerical analysis of corner effect of an excavation supported by ground anchors

    , Article International Journal of Geotechnical Engineering ; Volume 16, Issue 7 , 2022 , Pages 903-915 ; 19386362 (ISSN) Ahmadi, A ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    This paper presents a case study and numerical simulations of a corner of a deep excavation in Tehran supported by soldier piles and ground anchors. This study focuses on the differences between 2D and 3D numerical modelling in estimating the wall deflection at the corner locations of the excavation. Furthermore, the performance of modelling with Mohr–Coulomb constitutive law was compared with the result of a hardening soil model. The modelling procedure was calibrated against a full-scale instrumented tieback wall at Texas A&M University and the monitoring data of the excavation project. The results indicated that the hardening soil model yields reasonable predictions of wall deflection in... 

    Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences

    , Article Renewable and Sustainable Energy Reviews ; Volume 140 , 2021 ; 13640321 (ISSN) Yazdani Cherati, D ; Ghasemi Fare, O ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Ground Source Heat Pumps (GSHPs) have been installed all around the world to harvest shallow geothermal energy for heating and cooling building envelopes. However, the high initial cost of these systems (e.g., drilling and installation costs) limits the popularity and total usage of GSHPs around the world. To reduce the initial cost of these systems, geothermal heat exchangers are combined with structural components of the building, such as deep foundations, or energy walls. Energy piles or thermo-active foundations that serve dual purposes have been widely utilized in the last two decades in many developed countries. However, in most of the developing countries like Iran, there are several... 

    Seismic behavior of a dolphin-type berth subjected to liquefaction induced lateral spreading: 1g large scale shake table testing and numerical simulations

    , Article Soil Dynamics and Earthquake Engineering ; Volume 140 , 2021 ; 02677261 (ISSN) Kavand, A ; Haeri, S. M ; Raisianzadeh, J ; Sadeghi Meibodi, A ; Afzal Soltani, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The effects of liquefaction induced lateral spreading on the piles of a dolphin-type berth were investigated using 1 g large scale shake table testing accompanied by numerical simulations. For this purpose, various aspects of the response of the soil and the pile group to lateral spreading were considered. The results indicated that large bending moments were induced in the piles during lateral spreading and the downslope piles of the group received greater bending moments than the upslope one. The monotonic components of bending moments in the piles were reasonably predicted by the displacement based numerical approach using p-y springs when they were properly tuned for strength reduction... 

    Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading

    , Article Renewable Energy ; Volume 172 , 2021 , Pages 998-1012 ; 09601481 (ISSN) Ng, C. W. W ; Farivar, A ; Gomaa, S. M. M. H ; Shakeel, M ; Jafarzadeh, F ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    There is an increasing interest and use of energy foundation worldwide. Full-scale tests, physical model tests at one Earth's gravity and at elevated gravity in a geotechnical centrifuge and numerical simulations have been widely reported in the literature. Almost all studies have focused on single energy piles (EPs) and pile groups subjected to symmetrical thermal loads, although it is not unusual to have energy pile groups stressed by non-symmetrical thermal loads. In this study, a series of non-symmetrical thermal loading centrifuge model tests were conducted in saturated soft clay (OCR = 1.7), which is much vulnerable to temperature changes. The tests aim to investigate the effects of... 

    Drilled shafts in sand: failure pattern and tip resistance using numerical and analytical approaches

    , Article International Journal of Geotechnical Engineering ; 2021 ; 19386362 (ISSN) Jazebi, M ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Drilled shafts are one of the most important types of pile foundations. Several researchers have suggested different soil failure patterns for driven piles; however, for drilled shafts, this issue is inadequately addressed in the literature. In this paper, a numerical approach was pursued to obtain the location and dimensions of plastic zones around the tip of drilled shafts. The dependence of the suggested failure pattern size on the soil properties and drilled shaft dimensions was investigated. Based on several analyses, a soil jug-shaped failure pattern around the tip of drilled shafts was proposed, and its dimensions were determined using the regression-based and trial and error... 

    Investigation of thermo-mechanical response of a geothermal pile through a small-scale physical modelling

    , Article 2nd International Conference on Energy Geotechnics, ICEGT 2020, 20 September 2020 through 23 September 2020 ; Volume 205 , 2020 Hashemi Senejani, H ; Ghasemi Fare, O ; Yazdani Cherati, D ; Jafarzadeh, F ; Sharif University of Technology
    EDP Sciences  2020
    Abstract
    Energy piles have been used around the world to harvest geothermal energy to heat and cool residential and commercial buildings. In order to design energy geo-structures, thermo-mechanical response of the geothermal pile must be carefully understood. In this paper, a small scale physical model is designed and a series of heating thermal cycles with various vertical mechanical loads are performed. The instrumented pile is installed inside a dry sand bed. Changes in pile head displacement, shaft strains and pile and sand temperatures are monitored using an LVDT, strain gauges and thermocouples, respectively. Prolonged heating cycles, which would continue until boundary temperature changes,... 

    Axial load transfer analyses of energy piles at a rock site

    , Article Geotechnical and Geological Engineering ; Volume 38, Issue 5 , 4 May , 2020 , Pages 4711-4733 Moradshahi, A ; Khosravi, A ; McCartney, J. S ; Bouazza, A ; Sharif University of Technology
    Springer  2020
    Abstract
    An axial load-transfer analysis for energy piles is presented in this study that incorporates empirical models for estimating the side shear resistance and end bearing capacity in rock along with associated normalized stress-displacement curves. The analysis was calibrated using results from field experiments involving monotonic heating of three 15.2 m-long energy piles in sandstone. Analyses of the field experiments indicates that poor cleanout of the excavations led to an end restraint smaller than that expected for a clean excavation in sandstone. Specifically, end bearing parameters representative of cohesionless sand were necessary to match the load-transfer analysis to the field... 

    Response of a group of stiff piles to liquefaction induced lateral spreading: numerical simulation of a shaking table experiment

    , Article 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2019, 14 October 2019 through 18 October 2019 ; 2020 Haeri, S. M ; Afzalsoltani, S ; Sharif University of Technology
    Asian Regional Conference on Soil Mechanics and Geotechnical Engineering  2020
    Abstract
    During recent years, extensive studies have been conducted around the world documenting liquefaction induced lateral spreading and its effects on deep foundations. This study is aimed to numerically model a shaking table experiment, to investigate the effect of lateral spreading on piles and also to assess the capability of an advanced critical state two-surface plasticity model in predicting soil and pile responses to lateral spreading. Changes in permeability of the soil layers during the shaking are also accounted for using the software's built-in programming language, FISH. Numerical results showed that the onset of liquefaction occurs after just a few cycles from the beginning of the... 

    A numerical approach on side resistance of drilled shafts embedded in sandy soils

    , Article International Journal of Geotechnical Engineering ; Volume 14, Issue 6 , 2020 , Pages 644-652 Jazebi, M ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This study numerically investigates the side resistance of drilled shafts (bored piles) in sand using FLAC2D computer program. The results of the equations available in the literature are compared with the results of the present numerical study. A series of analyses is also conducted to assess the effects of various soil and pile parameters on the magnitude of side resistance of bored piles embedded in sand. Furthermore, the coupling (combined) effect of coefficient of lateral earth pressure with friction angle, and the coefficient of lateral earth pressure with a unit weight of soil on side resistance are investigated. The results show that the maximum effect of K0 on side resistance occurs... 

    Finite element modelling and seismic behaviour of integral abutment bridges considering soil–structure interaction

    , Article European Journal of Environmental and Civil Engineering ; Volume 24, Issue 6 , January , 2020 , Pages 767-786 Mahjoubi, S ; Maleki, S ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    A comprehensive non-linear finite element (FE) model of integral abutment bridges (IABs) is presented to facilitate the analysis of such bridges using commercial software, especially under seismic loading. The presented model is capable of capturing non-linearity in both the structure and soil, in addition to considering far-field soil response. The model is simple enough to be used for practical purposes. On the other hand, many aspects of seismic behaviour of IABs are unclear, due to complicated soil–structure interaction. Using the presented model, a parametric study is performed to identify the effects of bridge length, abutment type and soil type on seismic behaviour of IABs. Non-linear... 

    Collapse risk and earthquake-induced loss assessment of buildings with eccentrically braced frames

    , Article Journal of Constructional Steel Research ; Volume 168 , May , 2020 Moammer, O ; Madani, H. M ; Dolatshahi, K. M ; Ghyabi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, earthquake-induced economic loss of buildings with the eccentrically braced frame as the lateral load resisting system is investigated. Economic loss in this paper includes collapse loss, demolition loss, and structural and nonstructural repair loss. A simplified probabilistic story-based loss estimation procedure is employed for this purpose. A thorough study is conducted on the verification of shear link response with experimental results as shear link is the main source of nonlinearity in eccentrically braced frames. Nonlinear response history analyses are conducted on four, eight and sixteen story prototype models and engineering demand parameters such as story drift... 

    Numerical finite element analysis of laterally loaded fin pile in sandy soil

    , Article Innovative Infrastructure Solutions ; Volume 4, Issue 1 , 2019 ; 23644176 (ISSN) Yaghobi, M. H ; Hanaei, F ; Fazel Mojtahedi, S. F ; Rezaee, M ; Sharif University of Technology
    Springer  2019
    Abstract
    In the present study, the behavior of fin pile under lateral loading was investigated by ABAQUS software. First, the generated model was verified against an available experimental small-scale test in the literature. Having conducted verification, a study was carried out on the fin pile dimensions under lateral loading. Different parameters, such as pile diameter, fin’s length, and width, were studied. Moreover, a study on the fin’s aspect ratio by setting fin’s area constant was conducted, and then, optimum fin’s ratio was obtained. The results indicated that both fin’s length and width could improve pile efficiency under lateral loading, yet fin’s length had a more critical impact, and...