Loading...
Search for: piles
0.014 seconds
Total 123 records

    Study of the behavior of pile groups during lateral spreading in medium dense sands by large scale shake table test

    , Article International Journal of Civil Engineering ; Vol. 12, Issue. 3 , 2014 , pp. 374-391 ; ISSN: 17350522 Kavand, A ; Haeri, S. M ; Asefzadeh, A ; Rahmani, I ; Ghalandarzadeh, A ; Bakhshi, A ; Sharif University of Technology
    Abstract
    In this paper, different aspects of the behavior of 2×2 pile groups under liquefaction-induced lateral spreading in a 3-layer soil profile is investigated using large scale 1g shake table test. Different parameters of the response of soil and piles including time-histories of accelerations, pore water pressures, displacements and bending moments are presented and discussed in the paper. In addition, distribution of lateral forces due to lateral spreading on individual piles of the groups is investigated in detail. The results show that total lateral forces on the piles are influenced by the shadow effect as well as the superstructure mass attached to the pile cap. It was also found that... 

    Numerical study of ground vibration due to impact pile driving

    , Article Proceedings of the Institution of Civil Engineers: Geotechnical Engineering ; Vol. 167, issue. 1 , August , 2014 , p. 28-39 ; 13532618 Khoubani, A ; Ahmadi, M. M ; Sharif University of Technology
    Abstract
    Ground vibration due to pile driving is a long-lasting concern associated with the foundation construction industry. It is of great importance to estimate the level of vibration prior to the beginning of pile driving, to avoid structural damage, or disturbance of building occupants. In this study, an axisymmetric finite-element model that utilises an adaptive meshing algorithm has been introduced, using the commercial code Abaqus, to simulate full penetration of the pile from the ground surface to the desired depth by applying successive hammer impacts. The model has been verified by comparing the computed particle velocities with those measured in the field. The results indicate that the... 

    Estimation of current-induced pile groups scour using a rule-based method

    , Article Journal of Hydroinformatics ; Volume 15, Issue 2 , September , 2013 , Pages 516-528 ; 14647141 (ISSN) Ghaemi, N ; Etemad-Shahidi, A ; Ataie-Ashtiani, B ; Sharif University of Technology
    2013
    Abstract
    Scour phenomenon around piles could endanger the stability of the structures placed on them. Therefore, an accurate estimation of the scour depth around piles is very important for engineers. Due to the complexity of the interaction between the current, seabed and pile group; prediction of the scour depth is a difficult task and the available empirical formulas have limited accuracy. Recently, soft computing methods such as artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) have been used for the prediction of the scour depth. However, these methods do not give enough insight into the generated models and are not as easy to use as the empirical formulas. In... 

    Sensitivity analysis of jacket-type offshore platforms under extreme waves

    , Article Journal of Constructional Steel Research ; Volume 83 , 2013 , Pages 147-155 ; 0143974X (ISSN) Hezarjaribi, M ; Bahaari, M. R ; Bagheri, V ; Ebrahimian, H ; Sharif University of Technology
    2013
    Abstract
    Jacket-type offshore platforms play an important role in oil and gas industries in shallow and intermediate water depths such as Persian Gulf region. Such important structures need accurate considerations in analysis, design and assessment procedures. In this paper, nonlinear response of jacket-type platforms against extreme waves is examined utilizing sensitivity analyses. Results of this paper can reduce the number of random variables and consequently the computational effort in reliability analysis of jacket platforms, noticeably. Effects of foundation modeling have been neglected in majority of researches on the response of jacket platforms against wave loads. As nonlinear response of... 

    Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing

    , Article Soil Dynamics and Earthquake Engineering ; Volume 38 , 2012 , Pages 25-45 ; 02677261 (ISSN) Haeri, S. M ; Kavand, A ; Rahmani, I ; Torabi, H ; Sharif University of Technology
    2012
    Abstract
    Liquefaction-induced lateral spreading has imposed severe damages to many important structures supported on pile foundations during past earthquakes. As a result, evaluation of pile response to lateral spreading is an important step towards safe and resistant design of pile foundations against this destructive phenomenon. Current paper aims to study the response of a group of piles subjected to liquefaction-induced lateral spreading using a large scale 1-g shake table test. General test results including time-histories of accelerations, pore water pressures, displacements and bending moments are presented and discussed in this paper. In addition, distribution of lateral soil pressure on... 

    Study on optimized piled-raft foundations (PRF) performance with connected and non-connected piles- three case histories

    , Article International Journal of Civil Engineering ; Volume 10, Issue 2 , 2012 , Pages 100-111 ; 17350522 (ISSN) Eslami, A ; Veiskarami, M ; Eslami, M. M ; Sharif University of Technology
    2012
    Abstract
    It has been realized that the raft (mat) foundations are capable of bearing very large loads when they are assisted with a pile group. The contribution of both raft and piles to carry the surcharge loads is taken into account, considering the stiffness and strength of involved elements in the system, i.e. piles, raft and surrounding soil. The piles are usually required not to ensure the overall stability of the foundation but to act as settlement reducers. There is an alternative design in which, the piles are nonconnected from the raft to reduce the settlement, which are then known to be "settlement reducer non-connected piles" to increase the system stiffness. In this paper, two and three... 

    Three dimensional flow in anisotropic zoned porous media using boundary element method

    , Article Engineering Analysis with Boundary Elements ; Volume 36, Issue 5 , 2012 , Pages 812-824 ; 09557997 (ISSN) Rafiezadeh, K ; Ataie Ashtiani, B ; Sharif University of Technology
    2012
    Abstract
    Coupling the adjacent zones for seepage analysis in porous media needs compatibility and equilibrium equations (equality of potential on coinciding nodes and conservation of flowing mass between zones, respectively). When stretched coordinate transformation is applied to the anisotropic zones, the Dirichlet boundary conditions remain unchanged, but the Neumann boundary condition should also be transformed. Similarly in a zoned problem, for the interface between zones, compatibility equations remain unchanged during the transformation while the equilibrium equations should be transformed. In this paper, transformed Neumann boundary conditions and equilibrium equations for the interface of... 

    Dynamic behavior of pile foundations under cyclic loading in liquefiable soils

    , Article Computers and Geotechnics ; Volume 40 , 2012 , Pages 114-126 ; 0266352X (ISSN) Rahmani, A ; Pak, A ; Sharif University of Technology
    Abstract
    In this paper, a fully coupled three-dimensional dynamic analysis is carried out to investigate the dynamic behavior of pile foundations in liquefied ground. A critical state bounding surface plasticity model is used to model soil skeleton, while a fully coupled (u- P) formulation is employed to analyze soil displacements and pore water pressures. Furthermore, in this study, variation of permeability coefficient during liquefaction is taken into account; the permeability coefficient is related to excess pore water pressure ratio. Results of a centrifuge test on pile foundations are used to demonstrate the capability of the model for reliable analysis of piles under dynamic loading. Then, the... 

    Intelligent vibration control of micro-cantilever beam in MEMS

    , Article 2011 IEEE International Conference on Mechatronics, ICM 2011 - Proceedings, 13 April 2011 through 15 April 2011, Istanbul ; April , 2011 , Pages 336-341 ; 9781612849836 (ISBN) Sarrafan, A ; Zareh, S. H ; Zabihollah, A ; Khayyat, A. A ; Sharif University of Technology
    2011
    Abstract
    Considerable attention has been devoted recently to vibration control using intelligent materials as sensor/actuator. An intelligent control technique using a neural network is proposed for vibration control of micro-cantilever beam with bonded piezoelectric sensor and actuator. Structure modal characteristic analysis is done to determine the optimal configuration of piezoelectric sensor and actuator. With the piezoelectric elements are surface-bonded near the same position to the fixed end of micro-cantilever beam, an optimal controller, linear quadratic Gaussian (LQG), and an intelligent strategy based on neural network are investigated. Finally, the simulation results are given to... 

    Hydraulic performance of labyrinth side weirs using vanes or piles

    , Article Proceedings of the Institution of Civil Engineers: Water Management ; Volume 164, Issue 5 , 2011 , Pages 229-241 ; 17417589 (ISSN) Kabiri Samani, A ; Borghei, S. M ; Esmaili, H ; Sharif University of Technology
    Abstract
    In the present study, methods for improving the hydraulic performance of labyrinth side weirs in a rectangular channel are reported based on model experimentation. For this purpose different arrangements and configurations of groups of guide vane plates and piles in the side weir flow field were tested. Experiments were conducted on labyrinth side weirs of different lengths and sill heights fitted in the test section of a rectangular glass-walled channel. Depths of flow were measured in both longitudinal and crosswise directions at regular intervals and their profiles were studied. It was found that the discharge coefficient of the labyrinth side weirs under these conditions gave... 

    Diffuse emissions of particles from iron ore piles by wind erosion

    , Article Environmental Engineering Science ; Volume 28, Issue 5 , 2011 , Pages 333-339 ; 10928758 (ISSN) Afshar Mohajer, N ; Torkian, A ; Sharif University of Technology
    Abstract
    Industrial air pollution from point and nonpoint sources of steel complexes has drawn increasingly more public attention in the past decades. Previous research efforts have been more concentrated on point sources of particulate emissions from these complexes. However, wind-induced particulate emissions from iron ore storage piles not only result in ambient air pollution but also increase economic adverse effects to the industry by loss of process raw materials. Experiments were conducted to assess the impact of wind speed and humidity on particulate emission rates from iron ore storage piles. A wind-generating system and specific iron ore, experimental piles (L:W:H of 30:11.5:5 cm) were... 

    , M.Sc. Thesis Sharif University of Technology Boushehrian, Ahmad (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Loads from laterally spreading ground have been a major cause of damages to pile foundations in past earthquakes. Analysis of case histories have shown that damages are particularly intense when a nonliquefiable surface crust layer spreads laterally over underling liquefied layers. In this research the effect of lateral spreading due to liquefaction on single piles embede in a gently sloping ground has been investigated. Finite element method using OpenSees is used to model the pile and embedded soil. The soil profile for all models consisted of a nonliquefiable crust layer overlying loose sand with Dr = 30-35% overlying dense sand with Dr = 70-80%. The effect of geometric properties such as... 

    Dynamic Analysis of Pile Foundations Embedded in Liquefiable Soils

    , M.Sc. Thesis Sharif University of Technology Rahmani, Amin (Author) ; Pak, Ali (Supervisor)
    Abstract
    The behavior of pile foundations under earthquake loading is an important issue that affects the performance of structures. Design procedures have been developed for evaluating pile behavior under earthquake loading; however, the application of these procedures to cases involving liquefiable ground is uncertain. The performance of piles in liquefied soil layers is much more complex than that of non-liquefying soil layers because not only the superstructure and the surrounding soil exert different dynamic loads on pile, but also the stiffness and shear strength of surrounding soil diminishes over time due to both non-linear behavior of soil and pore water pressure generation. In this... 

    Investigation on the Effect of Liquefaction-Induced Lateral Spreading on a Flexible Pile Group and Mitigation Measures for These Effects by Physical Modeling

    , M.Sc. Thesis Sharif University of Technology Raisianzadeh, Javad (Author) ; Haeri, Mohesn (Supervisor)
    Abstract
    Liquefaction-induced lateral spreading is a known cause of severe damages to deep foundations during past earthquakes. Lateral spreading often takes place in gently sloping grounds which consisted of saturated loose cohesionless soil deposits. Several researchers during recent years have been studying the behavior of piles and soil-pile interaction under lateral spreading but there are still many unknowns in this regard. Also with observing catastrophic damages during past earthquakes caused by lateral spreading, developing proper mitigation measures for existing vulnerable piles against this phenomenon is a necessary act. In the present research, the behavior of a 3x3 flexible pile group... 

    Numerical Study of Ground Vibrations due to Pile Driving and Effect of Trench on Reduction of Amplitude of Vibrations

    , M.Sc. Thesis Sharif University of Technology Khoubani, Ali (Author) ; Ahmadi, Mohammad Mehdi (Supervisor)
    Abstract
    Ground vibration during pile driving is one the most important factors that limits usage of this kind of piles. It is of great importance to estimate the level of vibration prior to the beginning of pile driving to avoid structural damage or disturbance of building occupants. In this study, an axisymmetric finite element model that utilises an adaptive meshing algorithm has been introduced, using the commercial code ABAQUS, to simulate the full penetration of a pile from the ground surface to the desired depth by applying successive hammer impacts. The model has been verified by comparing the computed particles velocity with those measured in the field. The results indicate that the peak... 

    Seismic Analysis of Offshore Patformsusing Endurance Time Method

    , M.Sc. Thesis Sharif University of Technology Hasani, Hamed (Author) ; Esmaeil Pourestekanchi, Homayun (Supervisor) ; Golafshani, Ali Akbar (Supervisor)
    Abstract
    In the countries with offshore oil field, Such as Iran, Offshore platforms are important. Hence seismic analysis of offshore platforms is important. Different methods for seismic assessment of these structures are presented. But these methods has own advantage and disadvantages. (Such as long analysis time and simplified assumptions of linear behavior), but by using Endurance Time method, the method had shown the ability to analyze complex structures, It is hoped that these problems can be resolved. In this study, providing a suitable model of soil and structures of a single pile and then an offshore platform using DEEPSOIL and Open SEES software and performance of these structures at... 

    Numerical Study of the Effect of Liquefaction-Induced Lateral Spreading on a group of piles

    , M.Sc. Thesis Sharif University of Technology Dehnavi, Alireza (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    The behavior of pile foundations under earthquake loading is an important issue that affects the performance of structures. Design procedures have been developed for evaluating pile behavior under earthquake loading; however, the application of these procedures to cases involving liquefiable ground is uncertain. The performance of piles in liquefied soil layers is much more complex than that of non-liquefying soil layers because not only the superstructure and the surrounding soil exert different dynamic loads on pile, but also the stiffness and shear strength of surrounding soil diminishes over time due to both non-linear behavior of soil and pore water pressure generation. In this... 

    Liquefaction Effects on (a) Individual and Group of Capless Piles and (b) Group of three Piles under Real and Artificial Earthquakes

    , M.Sc. Thesis Sharif University of Technology Sabouri, Marjan (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    In the areas where the soil beneath the foundation is made of loose to semi-consolidated sand or noncohesive silts, Buildings and bridges are usually built on the pile foundations. One important issue that must be considered in the design of piles in saturated sandy soils, is liquefaction potential of saturated sandy soil under earthquake loads. During the earthquake, saturated sandy soil faces the sudden loss of shear strength in other word it liquifies . Liquefied Soil acts like a viscous fluid. This behaviour considerably increases the soil deformation and consequently the widespread disruption of soil layers, causes large deformation and applies great amount of forces on the piles... 

    Effect of Dissipation and Perturbation in Sandpile Model

    , M.Sc. Thesis Sharif University of Technology Sebtosheikh, Mahmood (Author) ; Moghimi Araghi, Saman (Supervisor)
    Abstract
    Sandpile models are the simplest models to study self organized criticality (SOC). In these phenomena, system reaches its critical state and shows power law behavior without fine tuning of any external parameters. In nature, many examples of such phenomena has been observed such as earthquakes, rainfalls and heights of mountains. In SOC systems, always there is an input and an out put of energy. In sandpile models the dissipative sites that play the role of energy dissipation, are usualy put on the boundary. In this study we have considered sandpile models which have dissipative site in the bulk. We have controled the ratio of the dissipative sites to the number of whole sites and have shown... 

    Annealed and quenched disorder in sand-pile models with local violation of conservation

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 92, Issue 2 , August , 2015 ; 15393755 (ISSN) Moghimi Araghi, S ; Sebtosheikh, M ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    In this paper we consider the Bak, Tang, and Wiesenfeld (BTW) sand-pile model with local violation of conservation through annealed and quenched disorder. We have observed that the probability distribution functions of avalanches have two distinct exponents, one of which is associated with the usual BTW model and another one which we propose to belong to a new fixed point; that is, a crossover from the original BTW fixed point to a new fixed point is observed. Through field theoretic calculations, we show that such a perturbation is relevant and takes the system to a new fixed point