Loading...
Search for: prototypes
0.012 seconds
Total 63 records

    Selection of the Optimal Orientation of Parts in Rapid Prototyping Processes

    , M.Sc. Thesis Sharif University of Technology Amir Hossein Golmohammadi (Author) ; Khodaygan, Saeed (Supervisor)
    Abstract
    Additive manufacturing (AM), also known as Rapid prototyping or D printing, is a new technology for the manufacturing of the physical parts through an additive manner. In the AM process, the orientation pattern of the part is one of the most important factors that significantly affects the product properties such as the build time, the surface roughness, the mechanical strength, the wrinkling, and the amount of support material. The build time and the surface roughness are the more imperative criteria than others that can be considered to find the optimum orientation of parts. In this research, Two method is used to optimize part build orientation (PBO). In the first method a new combined... 

    Investigation of the Effect of Additive Manufacturing Process Parameters on the Geometry of Components Made of Inconel 625 by Direct Metal Deposition

    , M.Sc. Thesis Sharif University of Technology Nankali, Mobin (Author) ; Akbary, Javad (Supervisor) ; Moradi, Mahmoud (Supervisor)
    Abstract
    Additive manufacturing technology (AM) is one of the new methods of rapid prototyping. Experts claim that using this process can produce a prototype of the product with any complex geometry in the shortest possible time. Among the methods of metal additive fabrication, the direct metal layering method with the powder coaxial nozzle has different capabilities and has received much attention by researchers. In this research, we intend to find a relationship between device parameters and the geometry of samples made by direct metal layer method. According to the research, many parameters affect the quality of the samples made by this method, the most effective of which are the three parameters... 

    Design and Analysis of a Robotic Duct Cleaning System

    , M.Sc. Thesis Sharif University of Technology Ghorbani Faal, Siamak (Author) ; Vossoughi, Gholamreza (Supervisor) ; Ghaemi Osgouie, Kambiz (Supervisor)
    Abstract
    Delivering high quality and clean air into occupied spaces is the main goal of Heating, Ventilation and Air Conditioning (HVAC) systems. HVAC systems draw supply air which usually contains fungi and moisture. Fungi and moisture plus organic materials create a good bed for mold growth. Studies prove that duct cleaning process can definitely reduce the amount of pollutants present in the ducts. Hence, it has positive impact on human lives both regarding psychological and physical points of view. Duct cleaning method’s application difficulties and ducts’ unreachable environments motivated duct cleaning firms to employ robots for duct cleaning tasks. Although there are considerable numbers of... 

    Design and Fabrication of a 3D Multiparticle Microfluidic System

    , M.Sc. Thesis Sharif University of Technology Olyanasab, Ali (Author) ; Fardmanesh, Mehdi (Supervisor) ; Annabestani, Mohsen (Co-Supervisor)
    Abstract
    Microfluidic technology is a field of science that deals with the design, implementation, optimization, and testing of fluid systems in small dimensions. This technology has made significant progress in various fields in the last decade, especially in medical engineering. As an interdisciplinary scientific field, this growing technology has many applications in medicine, pharmaceuticals, chemistry, and electronic industries. One of the primary applications of microfluidic devices is the development of "lab-on-a-chip" systems as point-of-care diagnostic tools, such as rapid diagnosis during surgery. A microfluidic system includes various functional modules: sample preparation and fluid... 

    Design and Assessment of Accuracy of a Patient-Specific Drill Guide Template for Thoracic Pedicle Screw Placement

    , M.Sc. Thesis Sharif University of Technology Ashouri Sanjani, Mehran (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Fusion surgery or fixation of vertebrae in the spine is used to treat scoliosis, fractures, infections, tumors, spinal cord injuries, and disc herniation. In this type of surgery, two or more vertebrae are connected by special screws called pedicle screws to eliminate movement between the vertebrae. Given the serious risks of spinal fusion surgery, if the slightest mistake is made at the entry point or angle of the screw inside the vertebrae, the risk of spinal cord injury is very high, which is one of the complications of fusion surgery. Therefore, in order to increase the accuracy of screw placement, patient-specific template guides are used as drill guides in this operation. For this... 

    Design and Prototyping of a Fast Acting Gyroscopic Actuator for Vehicle Stability Applications

    , M.Sc. Thesis Sharif University of Technology Samani, Armin (Author) ; Durali, Mohammad (Supervisor)
    Abstract
    Cars with high center of gravity, such as SUV-Sport Utility Vehicles- have high tendency to roll over in high speeds and rapid maneuvers. An idea formerly proposed is to use a high speed rotating disc like a gyroscope on the onset of the rollover to exert a high stabilizing moment on the vehicle, and consequently prevent rollovers. Also using two counter rotating discs with opposite nutation will prevent interference with the car other degrees of freedom. To reduce the interference of the spinning discs with the vehicle dynamics, the discs are to be brought to speed by the action of a high accelerating mechanism during the rollover process(similar to the action of an airbag). This project... 

    Design and Hydrodynamic Modeling and Control of a Towed Underwater Vehicle and Its Statical and Dynamical Stability

    , M.Sc. Thesis Sharif University of Technology Khanmoradi, Nima (Author) ; Abbaspour Tehrni Fard, Madjid (Supervisor) ; Saayyadi, Hassan (Supervisor)
    Abstract
    Today, as an effective tool for marine applications, towed submarines play an im-portant role in various sectors of the marine industry, including defense, recreation, ocean exploration, etc. The high cost of existing thrust systems, as well as the signifi-cant vibrations in them, run counter to the goal of designing this small, low-cost sub-marine. Therefore, the decision was made to design this vessel with a tensile thrust system. In this project, an attempt is made to introduce and design the structure of the body and the carrying capacity of the passenger by a recreational submarine with the ability to move 10 people as passengers And while introducing the structure of the body shape and... 

    Modeling of the Mechanical Behavior of Rapid Prototyped Scaffolds Based on Their Pore Architecture and Introducing a Prototyping Method to Produce Ceramic Scaffolds

    , Ph.D. Dissertation Sharif University of Technology Amirkhani, Soodeh (Author) ; Bagheri, Reza (Supervisor) ; Baghaban Eslaminejad, Mohamad Reza (Supervisor)
    Abstract
    Mechanical behavior of tissue engineering scaffolds plays a key role in their biological performance; however the effect of microstructural features on mechanical behavior of such scaffolds is still under investigation. The objective of this study was to investigate the influence of pore architecture and relative density on mechanical behavior of rapid prototyped scaffolds. In this regard, scaffolds with different cubic, hexagonal and trigonal unit cells were designed. These unit cells were repeated in different arrangements in 3D space to produce different nodal connectivities. The internal dimension of pores varied from 500 to 600 μm. Plastic models of scaffolds then fabricated by 3D... 

    Reducing part Warpage by Optimizing Process Parameters in Selective Laser Sintering

    , M.Sc. Thesis Sharif University of Technology Ahmadi Dastjerdi, Ali (Author) ; Movahhedy, Mohammad Reza (Supervisor) ; Akbari, Javad (Supervisor)
    Abstract
    One of the newest methods of rapid prototyping is SLS . In this day, SLS is more common in compare others methods, because it uses little time and man does not nearly interfere in the producing stages of part which is made by SLS method. Also, sophisticated parts, which cannot be built by other methods, can be produced by SLS method. One of the disadvantages of SLS method is low dimensions accuracy of parts produced in this way. This problem has two major reasons: Shrinkage and Warpage. These two phenomena are created because of ununiformed temperature distribution. Others features which have effect on dimensions accuracy are residual stress, porosity and removing space of between powder... 

    Quick deployment of open-source hardware and software for a dual-channel biosignal recorder

    , Article 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications, ICSIMA 2013 ; 2013 ; 9781479908431 (ISBN) Zahedi, E ; Sharif University of Technology
    2013
    Abstract
    Access to a prototype during R&D can play a crucial role in early identification of the weaknesses in the design. Under circumstances that a particular commercial subsystem with the exact required specific features is unavailable, the realization of such a prototype can be delayed. In this paper, an example of rapid prototyping for a dual-channel biosignal data acquisition system based on the open-source concept is described. The selected biosignal is the finger photoplethysmogram. Except for Matlab, all other software components are open-source. The hardware design of the optical sensor utilized to record the signals is also open-source, making the system extremely affordable with the... 

    Progressive collapse resistance of cable net structures

    , Article Journal of Constructional Steel Research ; Volume 195 , 2022 ; 0143974X (ISSN) Vaezzadeh, A ; Dolatshahi, K. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study investigates the collapse resistance of the cable net structures. Compared to conventional structures, the analysis of the cable net structures is rather complicated due to the highly nonlinear behavior of the cables, which leads to large displacements and instabilities during the analysis. In this paper, 24 prototype structures are modeled with various force density levels, span lengths, and the number of spans. Several collapse scenarios, including the cable rupture, column removal, and restrain failure, are defined, and the prototype structures are analyzed considering 168 collapse scenarios. This paper aims to recognize the critical elements, the weak points, and other... 

    A novel pre-processing method to reduce noise effects in a prototype-based clustering algorithm

    , Article 2008 International Conference on Information and Knowledge Engineering, IKE 2008, Las Vegas, NV, 14 July 2008 through 17 July 2008 ; July , 2008 , Pages 587-593 ; 1601320752 (ISBN); 9781601320759 (ISBN) Taghikhaki, Z ; Minaei, B ; Masoum, A ; Sharif University of Technology
    2008
    Abstract
    In this paper we introduce a preprocessing method to reduce noise effects in noise prone environments. Prototype based clustering algorithms are sensitive to noise because the effect of noisy data are as same as effect of true data and this affects on calculation of clusters center and then reduces accuracy. Therefore, these algorithms can not be applied in noise-prone environments and if this is applied there, we can not trust to the results. To overcome such problems we reduce and in some cases eliminate the noisy data. Also a part of our method is applied on the source of generated data in a network. Then noisy data that the number of them is high in noisy environments are eliminated and... 

    Design and implementation of TSC type SVC using a new approach for electrical quantities measurement

    , Article 2001 IEEE Porto Power Tech Conference, Porto, 10 September 2001 through 13 September 2001 ; Volume 2 , 2001 , Pages 262-267 ; 0780371399 (ISBN); 9780780371392 (ISBN) Tabandeh, M ; Alavi, M. H ; Marami, M ; Dehnavi, G. R ; Sharif University of Technology
    2001
    Abstract
    In this paper, a compact algorithm for balancing the load and correction of power factor in three-phase three-wire system is presented. Susceptances of SVC in each phase are computed as a function of real and imaginary parts of line current. This calculation is based on unity power factor and elimination of negative sequence of currents. A laboratory prototype of Thyristor Switched Capacitor (TSC) at 380V and 45KVAR is designed and implemented. Also, a new approach for measuring active and reactive power, power factor and voltage is presented. This measuring technique is based on integration of current signal over a specific part of voltage signal period. Finally, a brief description of... 

    A WiMAX/LTE compliant FPGA implementation of a high-throughput low-complexity 4x4 64-QAM soft MIMO receiver

    , Article Conference Record - Asilomar Conference on Signals, Systems and Computers, 7 November 2010 through 10 November 2010, Pacific Grove, CA ; 2010 , Pages 385-389 ; 10586393 (ISSN) ; 9781424497218 (ISBN) Smolyakov, V ; Patel, D ; Shabany, M ; Glenn Gulak, P ; Sharif University of Technology
    2010
    Abstract
    This paper presents a prototype of a high-throughput 4x4 64-QAM MIMO receiver consisting of a channel matrix QR decomposition, a soft-output K-Best MIMO detector and a Convolutional Turbo Code decoder. The proposed MIMO receiver provides low processing latency and a pipelined architecture scalable to a larger number of antennas and constellation order. Therefore, it is suitable for LTE-Advanced and IEEE 802.16m broadband wireless standards. A rapid prototyping platform interfacing MATLAB with Xilinx ISE was used in the development of the 4x4 64-QAM MIMO receiver. The receiver utilizes 96% of the slice LUTs and 78% of slice registers on Virtex-5 FX130T FPGA, operating at a maximum frequency... 

    Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features

    , Article Materials Science and Engineering A ; Volume 428, Issue 1-2 , 2006 , Pages 148-158 ; 09215093 (ISSN) Simchi, A ; Sharif University of Technology
    2006
    Abstract
    In the present work, the densification and microstructural evolution during direct laser sintering of metal powders were studied. Various ferrous powders including Fe, Fe-C, Fe-Cu, Fe-C-Cu-P, 316L stainless steel, and M2 high-speed steel were used. The empirical sintering rate data was related to the energy input of the laser beam according to the first order kinetics equation to establish a simple sintering model. The equation calculates the densification of metal powders during direct laser sintering process as a function of operating parameters including laser power, scan rate, layer thickness and scan line spacing. It was found that when melting/solidification approach is the mechanism... 

    Direct metal laser sintering of Fe-C-Cu steel powder

    , Article European Powder Metallurgy Congress and Exhibition, Euro PM 2005, Prague, 2 October 2005 through 5 October 2005 ; Volume 3 , 2005 , Pages 41-47 ; 9781899072187 (ISBN) Simchi, A ; Petzoldt, F ; Pohl, H ; European Powder Metallurgy Association ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2005
    Abstract
    Cu-alloyed sintered steels are one of the main product groups in ferrous powder metallurgy (P/M). To expand the application of P/M technology to different sectors of industry and to create new market, it is believed that rapid prototyping and short serial production of sintered parts for functional testing is important. In the present work, rapid prototyping of sintered Fe-C-Cu steel powders by direct metal laser sintering (DMLS) process was studied. Fe, Fe-0.8%C, Fe-2%Cu, Fe-4%Cu, Fe-0.8%C-2%Cu-0.35%P powders were laser sintered in widely varying conditions. The densification and microstructural features of the sintered parts were evaluated. The results revealed that rapid prototyping of... 

    Densification and microstructural evaluation during laser sintering of M2 high speed steel powder

    , Article Materials Science and Technology ; Volume 20, Issue 11 , 2004 , Pages 1462-1468 ; 02670836 (ISSN) Simchi, A ; Asgharzadeh, H ; Sharif University of Technology
    2004
    Abstract
    In the present work, the densification and microstructure of M2 high speed steel powder processed by direct laser sintering method was studied. Test specimens were produced using a 200 W continuous wave CO2 laser beam at different scan rates ranging from 50 to 175 mm s-1. The building process was performed under argon and nitrogen atmospheres in order to evaluate the role of sintering atmosphere. It was found that the sintered density strongly depends on the laser scan rate and thus on the duration time of the laser beam on the surface of the powder particles. Generally, with a decrease in the scan rate higher densification was obtained. However, formation of large cracks and delamination of... 

    Direct laser sintering of iron-graphite powder mixture

    , Article Materials Science and Engineering A ; Volume 383, Issue 2 , 2004 , Pages 191-200 ; 09215093 (ISSN) Simchi, A ; Pohl, H ; Sharif University of Technology
    2004
    Abstract
    In the present work, the role of graphite addition on the laser sintering of iron powder was studied. Powder mixtures containing iron and 0.4, 0.8, 1.2, and 1.6 wt.% graphite were prepared by blending elemental powders. These powders were sintered layer-by-layer under nitrogen atmosphere using a continuous wave CO2 laser beam. A laser power of 70-225 W, scan rate of 50-600 mm s-1, scan line spacing of 0.1-0.3 mm, and layer thickness of 0.1 mm was used. It was found that the processing parameters play a key role on the densification of the iron-graphite powder mixtures. The addition of graphite enhances the densification of the iron powder and improves the surface quality of the laser... 

    On the development of direct metal laser sintering for rapid tooling

    , Article Journal of Materials Processing Technology ; Volume 141, Issue 3 , 2003 , Pages 319-328 ; 09240136 (ISSN) Simchi, A ; Petzoldt, F ; Pohl, H ; Sharif University of Technology
    2003
    Abstract
    An iron based powder blend has been developed for rapid tooling using a direct laser sintering process. The powder consists of a mixture of different elements including Fe, C, Cu, Mo and Ni. High sintering activities were obtained by tailoring the powder characteristics and optimizing the chemical constituents. The manufacturing of complex-shaped parts is possible at rates of 6.75 cm3/h according to CAD data. The residual porosity is less than 5 vol.%. The bending strength is around 900 MPa and the artifact hardness is 490 HV30. To further improve the service life of tools, the processed parts are sintered again in a vacuum furnace at 1260 °C for 30 min. This enables to manufacture precision... 

    A framework for reliable and ubiquitous inference in wireless sensor network

    , Article CSI International Symposium on Real-Time and Embedded Systems and Technologies, RTEST 2018 ; 26 June , 2018 , Pages 63-70 ; 9781538614754 (ISBN) Shamsaie, A ; Abdi, E ; Habibi, J ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Development of Internet of things (IoT) applications brings a new movement to the functionality of wireless sensor networks (WSNs) from only environment sensing and data gathering to collaborative inferring and ubiquitous intelligence. In intelligent WSNs, nodes collaborate to exchange the information needed to achieve the required inference or smartness. Efficiency or correctness of many smart applications rely on efficient, timely, reliable, and ubiquitous inference of information which may continually change in interaction with other nodes. In this paper, we introduce a framework which provides a generic solution for such common ubiquitous inferences. This framework brings the reliability...