Loading...
Search for: quantum-computers
0.012 seconds
Total 41 records

    Entanglement from dissipative dynamics into overlapping environments

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Vol. 90, issue. 6 , Dec , 2014 Mengoni, R ; Memarzadeh, L ; Mancini, S ; Sharif University of Technology
    Abstract
    We consider two ensembles of qubits dissipating into two overlapping environments, that is, with a certain number of qubits in common that dissipate into both environments. We then study the dynamics of bipartite entanglement between the two ensembles by excluding the common qubits. To get analytical solutions for an arbitrary number of qubits we consider initial states with a single excitation and show that the largest amount of entanglement can be created when excitations are initially located among side (noncommon) qubits. Moreover, the stationary entanglement exhibits a monotonic (nonmonotonic) scaling versus the number of common (side) qubits  

    Design and optimization of fully digital SQUID based on bi-directional RSFQ

    , Article Journal of Superconductivity and Novel Magnetism ; Vol. 27, issue. 7 , 2014 , p. 1623-1628 Foroughi, F ; Bozbey, A ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    Bi-directional RSFQ benefits from using both positive and negative SFQ pulses to manipulate and transfer digital data. This allows more flexibility in the design of simpler circuits with enhanced performance. On the other hand, using the AC bias current, one can replace on-chip resistive current distributors with inductors. This resembles RQL logic, but in contrast to RQL, it is possible to use the well-established standard RSFQ cells in bi-directional RSFQ. These two advantages (energy-efficient computation and flexibility in design) make bi-directional RSFQ a powerful tool in next-generation supercomputers and also compatible with ultra-low-temperature quantum computers. In this work, to... 

    Entanglement dynamics for qubits dissipating into a common environment

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 87, Issue 3 , 2013 ; 10502947 (ISSN) Memarzadeh, L ; Mancini, S ; Sharif University of Technology
    2013
    Abstract
    We provide an analytical investigation of the entanglement dynamics for a system composed of an arbitrary number of qubits dissipating into a common environment. Specifically, we consider product initial states with a given number of excitations whose evolution remains confined on low-dimensional subspaces of the operators space. We then find for which pairs of qubits entanglement can be generated and can persist at a steady state. Finally, we determine the stationary distribution of entanglement as well as its scaling versus the total number of qubits in the system  

    Topological code autotune

    , Article Physical Review X ; Volume 2, Issue 4 , October , 2012 ; 21603308 (ISSN) Fowler, A. G ; Whiteside, A. C ; McInnes, A. L ; Rabbani, A ; Sharif University of Technology
    2012
    Abstract
    Many quantum systems are being investigated in the hope of building a large-scale quantum computer. All of these systems suffer from decoherence, resulting in errors during the execution of quantum gates. Quantum error correction enables reliable quantum computation given unreliable hardware. Unoptimized topological quantum error correction (TQEC), while still effective, performs very suboptimally, especially at low error rates. Hand optimizing the classical processing associated with a TQEC scheme for a specific system to achieve better error tolerance can be extremely laborious. We describe a tool, AUTOTUNE, capable of performing this optimization automatically, and give two highly... 

    Crosstalk suppression and high-fidelity measurement in 2-D tunneling of coupled Josephson junctions

    , Article IEEE Transactions on Applied Superconductivity ; Volume 22, Issue 4 , 2012 ; 10518223 (ISSN) Sadeghi, A ; Zandi, H ; Khorasani, S ; Sharif University of Technology
    2012
    Abstract
    We present a new configuration concept in which two similar Josephson junctions are coupled through a capacitor placed in parallel to a dc-superconducting quantum interference device (SQUID) to improve the characteristics of phase qubits. In real coupled quantum systems, because of mutual effects such as crosstalk, entangled quantum states cannot be independently measured. The proposed two-qubit system is demonstrated to have a negligible crosstalk, obtained from the application of a single measurement pulse and an appropriate external flux to one of the junctions and the dc-SQUID, respectively. Surprisingly, the theoretically predicted fidelity for a single-qubit design increases to 99.99%... 

    Study of junction and bias parameters in readout of phase qubits

    , Article Physica C: Superconductivity and its Applications ; Volume 475 , 2012 , Pages 60-68 ; 09214534 (ISSN) Zandi, H ; Safaei, S ; Khorasani, S ; Fardmanesh, M ; Sharif University of Technology
    2012
    Abstract
    The exact numerical solution of the nonlinear Ginzburg-Landau equation for Josephson junctions is obtained, from which the precise nontrivial current density and effective potential of the Josephson junctions are found. Based on the resulting potential well, the tunneling probabilities of the associated bound states are computed which are in complete agreement with the reported experimental data. The effects of junction and bias parameters such as thickness of the insulating barrier, cross sectional area, bias current, and magnetic field are fully investigated using a successive perturbation approach. We define and compute figures of merit for achieving optimal operation of phase qubits and... 

    Zeno effect for quantum computation and control

    , Article Physical Review Letters ; Volume 108, Issue 8 , February , 2012 ; 00319007 (ISSN) Paz Silva, G. A ; Rezakhani, A. T ; Dominy, J. M ; Lidar, D. A ; Sharif University of Technology
    Abstract
    It is well known that the quantum Zeno effect can protect specific quantum states from decoherence by using projective measurements. Here we combine the theory of weak measurements with stabilizer quantum error correction and detection codes. We derive rigorous performance bounds which demonstrate that the Zeno effect can be used to protect appropriately encoded arbitrary states to arbitrary accuracy while at the same time allowing for universal quantum computation or quantum control  

    Introduction to Categorical Aspects of Topological Quantum Computation

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Fatimah (Author) ; Karimipour, Vahid (Supervisor)
    Abstract
    One of the problems facing quantum computation is errors due to interaction with the environment which destroy coherence of quantum states. Most schemes to design a quantum computer therefore focus on finding ways to minimize the interactions of the qubits with the environment. Constructing such systems with large numbers of qubits which are infallible is a hard task and far from being achieved in the near future. There is another quantum computational model which is called topological quantum computation, proposing a different solution. Qubits of this model are quasiparticles of a 2-dimensional topologically ordered system that are called Anyons. In this model gates are nonabelian... 

    Quantum Error Correction and Fault-Tolerant Quantum Computation

    , M.Sc. Thesis Sharif University of Technology Bagheri Mehrab, Mohsen (Author) ; Karimipour, Vahid (Supervisor)
    Abstract
    Quantum states are highly susceptible to noise and can lose their coherence easily. Thus, for the large-scale quantum algorithms results to be valid, it is necessary to use an error correction process to eliminate the errors. The theory of quantum error correction provides a comprehensive methodology for protecting quantum states against noise. In this theory, by adding ancilla qubits and carefully encoding, quantum states are prepared such that they can be robust to a great extent against errors. To perform a scalable quantum computation, we face an even more daunting task. If our quantum gates are imperfect, everything we do will add to the error. So the quantum error correction could be... 

    Cohering and decohering power of quantum channels

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 92, Issue 3 , 2015 ; 10502947 (ISSN) Mani, A ; Karimipour, V ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    We introduce the concepts of cohering and decohering power of quantum channels. Using the axiomatic definition of the coherence measure, we show that the optimization required for calculations of these measures can be restricted to pure input states and hence greatly simplified. We then use two examples of this measure, one based on the skew information and the other based on the l1 norm; we find the cohering and decohering measures of a number of one-, two-, and n-qubit channels. Contrary to the view at first glance, it is seen that quantum channels can have cohering power. It is also shown that a specific property of a qubit unitary map is that it has equal cohering and decohering power in... 

    Comparison of parallel and antiparallel two-qubit mixed states

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 91, Issue 1 , January , 2015 ; 10502947 (ISSN) Mani, A ; Karimipour, V ; Memarzadeh, L ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    We investigate the correlation properties of separable two-qubit states with maximally mixed marginals. These states are divided to two sets with the same geometric quantum correlation. However, a closer scrutiny of these states reveals a profound difference between their quantum correlations as measured by more probing measures. Although these two sets of states are prepared by the same type of quantum operations acting on classically correlated states with equal classical correlations, the amount of final quantum correlation is different. We investigate this difference and trace it back to the hidden classical correlation which exists in their preparation process. We also compare these... 

    Quantum imaging as an ancilla-assisted process tomography

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 94, Issue 4 , 2016 ; 10502947 (ISSN) Ghalaii, M ; Afsary, M ; Alipour, S ; Rezakhani, A. T ; Sharif University of Technology
    American Physical Society  2016
    Abstract
    We show how a recent experiment of quantum imaging with undetected photons can basically be described as an (a partial) ancilla-assisted process tomography in which the object is described by an amplitude-damping quantum channel. We propose a simplified quantum circuit version of this scenario, which also enables one to recast quantum imaging in quantum computation language. Our analogy and analysis may help us to better understand the role of classical and/or quantum correlations in imaging experiments. © 2016 American Physical Society  

    Synthesis and Properties of Cationic Polynulcear Complexes of Manganese with the Anionic Keggin Type Polyoxometalates as Single Molecule Magnets Hx[Mn4O2(CH3COO)7(bipy)2]n[Kegiin-Polyoxometalates]m.yH2O

    , M.Sc. Thesis Sharif University of Technology Daneshmand Kashani, Pargol (Author) ; Mohammdi Boghaei, Davar (Supervisor)
    Abstract
    Single molecule magnets due to their magnetic tunneling effect and the interaction they have with an external magnetic field are used widely in quantum computing and also the storage of data with high capacities. Polyoxometalates that are used as counter ions for cationic single molecule magnets, are able to affect their spin-couple nature via a magnetic exchange and also have an influence on the crystal accumulation in order to change the magnetic property of the molecule. In this research the probability of sedimenting a cationic single molecule magnet, [Mn4O2(CH3COO)7(bipy)2]+, with the use of anionic polyoxometalates with Keggin structures has been investigated. Thus, the single... 

    Quantum Process Tomography: A New Approach Based on Moments

    , M.Sc. Thesis Sharif University of Technology Ghalaii, Masoud (Author) ; Tayefeh Rezakhani, Ali (Supervisor)
    Abstract
    In this report, we have formulated a new technique for characterizing quantum optical processes based on probing unknown processes only with coherent states and simply by measuring normally-ordered moments of output states. Our method has two substantial advantages in comparison with previous methods.First, for practical purposes of uantum-optical communications and information, predicting of the classicality or nonclassicality of output states from an unknown quantum process is generally important. Because of truncation of the Hilbert space in the Fock basis and/or exploiting Klauder theorem, antecedent methods failed to carry out foretelling the [non]classicality features of the process’... 

    Measurement-based Quantum Computation in Correlation Space

    , Ph.D. Dissertation Sharif University of Technology Koochakie, Mir Mohammad Reza (Author) ; Karimipour, Vahid (Supervisor) ; Rezakhani, Ali (Supervisor)
    Abstract
    Quantum computation is an unconventional way to compute employing quantum Physics. In this way of computation, quantum superposition and quantum entanglement have crucial roles to surpass common ways of computation. There is a special method for quantum computing which is known as “measurementbased quantum computation” (MBQC). In this method, sequential single-site measuring a highly-entangled state is used to perform computation. All of the existing MBQC models can be described in the “correlation space,” a virtual space corresponding to the physical space, of tensor network states. In this thesis, we introduce a recipe for designing such MBQC models. We elaborate our designing for... 

    Silicon Vacancy in 4H-SiC: Many-body Electronic Structure

    , M.Sc. Thesis Sharif University of Technology Najafi Ivaki, Moein (Author) ; Vesaghi, Mohammad Ali (Supervisor)
    Abstract
    The silicon vacancy in silicon carbide is a strong emergent candidate for applications in quantum information processing. 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states. Electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) investigations suggest that silicon vacancy point defects in SiC possess properties similar to those of the NV center in diamond. We provide a new theoretical frame to explain a wider range of experimental results. Employing a proposed generalized Hubbard model, with the help of electronic structure programs, DFT, second quantization, and various computational approaches, we obtain new... 

    Time Independent Quantum Circuits with Local Interactions

    , M.Sc. Thesis Sharif University of Technology Kianvash, Farzad (Author) ; Karimipour, Vahid (Supervisor)
    Abstract
    one of the important challenges for implementation of Quantum Computation is fabrication of Quantum Wires that transport the Quantum Information from one part of the Quantum Hardware to the other parts. Heisenberg Spin Chains are promising candidate for this. In article [28] Gaussian wave packets on the spin chains are used to encode the logical qubits. In this model, to implement unitary operation on these qubits, extra interaction are designed in some parts of the spin chains. As Gaussian wave packets move along this interactions, the desired unitary operators act on them. In fact, this is an static model without external control to perform Quantum Computation. In spite of many interesting... 

    Thermal effects on coherence and excitation transfer

    , Article Physical Review A ; Volume 96, Issue 4 , 2017 ; 24699926 (ISSN) Memarzadeh, L ; Mani, A ; Sharif University of Technology
    Abstract
    To control and utilize quantum features in small scale for practical applications such as quantum transport, it is crucial to gain a deep understanding of the quantum characteristics of states such as coherence. Here by introducing a technique that simplifies solving the dynamical equation, we study the dynamics of coherence in a system of qubits interacting with each other through a common bath at nonzero temperature. Our results demonstrate that depending on the initial state, the environment temperature affects coherence and excitation transfer in different ways. We show that when the initial state is incoherent, as time goes on, coherence and the probability of excitation transfer... 

    Sequentially generated entanglement, macroscopicity, and squeezing in a spin chain

    , Article Physical Review A ; Volume 96, Issue 4 , 2017 ; 24699926 (ISSN) Abad, T ; Mølmer, K ; Karimipour, V ; Sharif University of Technology
    Abstract
    We study quantum states generated by a sequence of nearest neighbor bipartite entangling operations along a one-dimensional chain of spin qubits. After a single sweep of such a set of operations, the system is effectively described by a matrix product state (MPS) with the same virtual dimension as the spin qubits. We employ the explicit form of the MPS to calculate expectation values and two-site correlation functions of local observables, and we use the results to study fluctuations of collective observables. Through the so-called macroscopicity and the squeezing properties of the collective spin variables they witness the quantum correlations and multiparticle entanglement within the... 

    An efficient lattice based multi-stage secret sharing scheme

    , Article IEEE Transactions on Dependable and Secure Computing ; Volume 14, Issue 1 , 2017 , Pages 2-8 ; 15455971 (ISSN) Pilaram, H ; Eghlidos, T ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, we construct a lattice based (t, n) threshold multi-stage secret sharing (MSSS) scheme according to Ajtai's construction for one-way functions. In an MSSS scheme, the authorized subsets of participants can recover a subset of secrets at each stage while other secrets remain undisclosed. In this paper, each secret is a vector from a t-dimensional lattice and the basis of each lattice is kept private. A t-subset of n participants can recover the secret(s) using their assigned shares. Using a lattice based one-way function, even after some secrets are revealed, the computational security of the unrecovered secrets is provided against quantum computers. The scheme is multi-use in...