Loading...
Search for: rockets
0.012 seconds
Total 28 records

    rajectory Optimization of the Internally Carried Air Launch

    , M.Sc. Thesis Sharif University of Technology Seraj, Javad (Author) ; Asadian, Nima (Supervisor) ; Fathi, Mohsen (Supervisor)
    Abstract
    One of the most interesting and at the same time the newest methods to launch a satellite into space is Air Launch or Launch throw the mother aircraft. The placement of the satellite into space by a rocket in specific altitude and speed is separated from the mother aircraft, takes place. The most problems in multi stage rocket launching is trajectory optimization to reaching the maximum height. The survey was conducted using classical optimization methods, which is derived the equations for the gradient based on the calculus of variations. that can be used or modified for emissions control wings and changing the direction of thrust exhaust. It should be noted that in the model of rigid body... 

    Integrated Impulsive Maneuver and Propulsion System Design for Upper Stages Guidance of Spacecrafts

    , M.Sc. Thesis Sharif University of Technology Zarezade, Ali (Author) ; Pourtakdoust, Hossain (Supervisor)
    Abstract
    This work is an attempt toward an integrated preliminary design of solid rocket (SR) propulsion system for impulsive orbital maneuvers. In this regard a comparative study is initially performed classifying current space propulsion systems and along the goals of this thesis, solid rocket system was selected for our integrated approach. Subsequently, two integration schemes were studied that differed in the primacy of the two design tasks. This study directed our focus to initially size and design an ideal rocket engine and refine it through integration with the maneuver design. Utilizing the ideal rocket concept and its governing equations, a SR was designed to provide the required total... 

    Analytical Solution of the Swirl Flow in Combustion Chamber of a Hybrid Rocket Engine

    , M.Sc. Thesis Sharif University of Technology Mohammad Beiki, Shahab (Author) ; Farahani, Mohammad (Supervisor) ; Rezayi, Hadi ($item.subfieldsMap.e)
    Abstract
    Hybrid engines are one of a variety of chemical propulsion systems that have been given special attention in recent years by various industries such as space and defense. The most important reasons for considering this type of system are its high safety, its affordable price compared with liquid fuel propulsion systems, the possibility of switching on and off and changing thrust. This system has a lot of disadvantages as well. This system cannot meet all the needs of different industries due to the low regression rate and, consequently, the limitation of the operating range, thrusts and special impulse. As a result, increasing the fuel regression rate in these engines can greatly expand... 

    Conceptual Design of a Solid Propellant Nanolauncher

    , M.Sc. Thesis Sharif University of Technology Ghadiri, Sajjad (Author) ; Farahani, Mohammad (Supervisor) ; Mohammadi, Alireza (Co-Supervisor)
    Abstract
    Nanolaunchers are launch vehicles capable of carring light payloads (under 50 kg) to Low Earth orbit and received much attention in the few past years. Launching the nanosatellites grown about 30 times from 2008 to 2017. Since this category of launch vehicles has fewer developing costs and lower thechnology level, they fit developing space technology in our country. Conversely, the demand of high propellant mass fraction and specific impulse may be a serious difficulty to attain this technology.The only operating nanolauncher in the world is SS-520-5 which belongs to Japan and is a three-stage solid propellant launcher. The goal of this project is also the conceptual design and feasiblity... 

    An analytical and experimental study of a hybrid rocket motor

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Vol. 228, Issue. 13 , December , 2014 , pp. 2475-2486 ; ISSN: 09544100 Rezaei, H ; Soltani, M. R ; Sharif University of Technology
    Abstract
    The hybrid rocket motor is a kind of chemical propulsion system that has been recently given serious attention by various industries and research centers. The relative simplicity, safety and low cost of this motor, in comparison with other chemical propulsion motors, are the most important reasons for such interest. Moreover, throttle-ability and thrust variability on demand are additional advantages of this type of motor. In this paper, the result of an internal ballistic simulation of hybrid rocket motor in a zero-dimensional form is presented. Further to validate the code, an experimental setup was designed and manufactured. The simulation results are compared with the experimental data... 

    Optimization of geometric parameters of latticed structures using genetic algorithm

    , Article Aircraft Engineering and Aerospace Technology ; Volume 83, Issue 2 , 2011 , Pages 59-68 ; 00022667 (ISSN) Hashemian, A. H ; Kargarnovin, M. H ; Jam, J. E ; Sharif University of Technology
    2011
    Abstract
    Purpose - The purpose of this paper is to analyze a squared lattice cylindrical shell under compressive axial load and to optimize the geometric parameters to achieve the maximum buckling load. Also a comparison between buckling loads of a squared lattice cylinder and a solid hollow cylinder with equal weight, length and outer diameter is performed to reveal the superior performance of the squared lattice cylindrical shells. Design/methodology/ approach - A cylindrical lattice shell includes circumferential and longitudinal rods with geometric parameters such as crosssection areas of the rods, distances and angles between them. In this study, the governing differential equation for buckling... 

    Study of subsonic-supersonic gas flow through micro/nanoscale nozzles using unstructured DSMC solver

    , Article Microfluidics and Nanofluidics ; Volume 10, Issue 2 , February , 2011 , Pages 321-335 ; 16134982 (ISSN) Darbandi, M ; Roohi, E ; Sharif University of Technology
    2011
    Abstract
    We use an extended direct simulation Monte Carlo (DSMC) method, applicable to unstructured meshes, to numerically simulate a wide range of rarefaction regimes from subsonic to supersonic flows through micro/nanoscale converging-diverging nozzles. Our unstructured DSMC method considers a uniform distribution of particles, employs proper subcell geometry, and follows an appropriate particle tracking algorithm. Using the unstructured DSMC, we study the effects of back pressure, gas/surface interactions (diffuse/specular reflections), and Knudsen number on the flow field in micro/nanoscale nozzles. If we apply the back pressure at the nozzle outlet, a boundary layer separation occurs before the... 

    Physical aspects of rarefied gas flow in micro to nano scale geometries using DSMC

    , Article 39th AIAA Fluid Dynamics Conference, 22 June 2009 through 25 June 2009, San Antonio, TX ; 2009 ; 9781563479755 (ISBN) Roohi, E ; Darbandi, M ; Mirjalili, V ; Schneider, G. E ; Sharif University of Technology
    Abstract
    Rarefied gas flow in micro/nano electro mechanical systems (MEMS/NEMS) does not perform exactly as that in macro-scale devices. The main goal in this study is to investigate mixed subsonic-supersonic flows in micro/nano channels and nozzles and to provide physical descriptions on their behaviors. We use DSMC method as a reliable numerical tool to extend our simulation. It is because the DSMC provides accurate solution for the Boltzmann equations over the entire range of rarefied flow regime or Knudsen numbers. As is known, the appearance of oblique/normal shocks at the inlet of a channel or a nozzle adds to the complexity of internal flow field analyses. We found some very unique physical... 

    A study of spacecraft reaction thruster configurations for attitude control system

    , Article IEEE Aerospace and Electronic Systems Magazine ; Volume 32, Issue 7 , 2017 , Pages 22-39 ; 08858985 (ISSN) Pasand, M ; Hassani, A ; Ghorbani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Reaction thrusters (RTs) are used as an alternative to momentum exchange devices when disturbance torques exceed the control authority of momentum exchange devices. The reaction control system (RCS) can employ some rocket thrusters to provide attitude control during the thrusting or coast phase. Within the control loop, the RCS's target could be either achieving and keeping a certain attitude or controlling the rate of an attitude change. In the coast phase, some tasks such as preacceleration, settling of liquid propellant, damping of structural vibrations, providing a velocity increment to separate stages and payloads, and carrying out orbital and nonorbital maneuvers may be included in its... 

    Time-varying structural reliability of launch vehicle via extreme response approach

    , Article Journal of Spacecraft and Rockets ; Volume 54, Issue 1 , 2017 , Pages 306-314 ; 00224650 (ISSN) Raouf, N ; Pourtakdoust, S. H ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2017
    Abstract
    Time-varying structural reliability of a multistage solid-propellant launch vehicle subjected to deterministic and stochastic loads is investigated. The study is of practical importance because the launch vehicle's structure is influenced by a combination of external aerodynamics as well as inertial and internal ballistic loads emanating from the solid rocket motors. In addition, as launch-vehicle flight conditions change during flight, the vehicle will be subjected to time-varying loads. In this sense, the environmental, aerodynamic, and internal pressure fluctuations can be interpreted as stochastic forces affecting the launch-vehicle structural reliability. To account for temporal... 

    Experimental study of fuel regression rate in an HTPB/N2O hybrid rocket motor

    , Article Scientia Iranica ; Volume 25, Issue 1 , 2018 , Pages 253-265 ; 10263098 (ISSN) Rezaei, H ; Soltani, M. R ; Mohammadi, A. R ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    The performance of an HTPB/N2O hybrid motor was experimentally investigated. A hybrid motor was designed and manufactured in a laboratory with the purpose of studying the effects of various parameters on the motor's performance, including fuel regression rate and specific impulse. A series of tests were conducted to find a correlation between the fuel regression rate and the oxidizer's mass flux. The effects of chamber's pressure on the regression rate as well as other performance parameters were investigated. While the burning rate did not change dramatically, both the efficiency and ISP of the motor increased. The local fuel regression rate and the fuel port were also calculated. In... 

    Reliability and failure analysis of jet vane tvc system

    , Article Journal of Failure Analysis and Prevention ; 2018 ; 15477029 (ISSN) Raouf, N ; Pourtakdoust, H ; Samiei Paghaleh, S ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Structural and system reliability of a typical jet vane (JV) thrust vector control (TVC) subsystem subjected to stochastic loadings is investigated. Jet vane TVC (JVTVC) is used in many aerospace liquid and solid propulsion systems. For the purpose of this work, JVTVC structural reliability of a solid rocket propulsion system is computed using an explicit closed-form limit state function. The JV structure is influenced by the internal ballistic loads emanating out of the solid rocket propulsion internal ballistic, whose performance is modeled via a one-dimensional uniform flow assumption at the engine steady operating condition. Subsequently, JV structural reliability is predicted using the... 

    Acoustic characteristics of a rocket combustion chamber: radial baffle effects

    , Article Applied Acoustics ; Volume 70, Issue 8 , 2009 , Pages 1051-1060 ; 0003682X (ISSN) Farshchi, M ; Mehrjou, H ; Salehi, M. M ; Sharif University of Technology
    2009
    Abstract
    This paper describes methods used for determining the characteristic acoustic modes and frequencies of a liquid-propellant rocket-motor combustion chamber and effects of radial baffles on the chamber's acoustic field. A multi-point sensing experimental setup, including stationary and moving sensors, was used to measure characteristic frequencies and mode shapes of a combustion chamber. A new technique based on the comparison of signal phase angles from stationary sensors to that of a moving sensor was used to map complex characteristic mode shapes of a combustor. A three-dimensional Helmholtz acoustic solver was also developed using an efficient finite volume approach for complex geometries... 

    A guidance algorithm for launch to equatorial orbit

    , Article Aircraft Engineering and Aerospace Technology ; Volume 81, Issue 2 , 2009 , Pages 137-148 ; 00022667 (ISSN) Marrdonny, M ; Mobed, M ; Sharif University of Technology
    2009
    Abstract
    Purpose - The purpose of this paper is to propose a new guidance algorithm for launching a satellite using an expendable rocket from an equatorial site to an equatorial low-Earth orbit. Design/methodology/approach - Guidance during endoatmospheric portion is based on a nominal trajectory computed prior to take-off. A set of updating computations begins anew at the time instant tg of transition from endoatmosphere to exoatmosphere. The updating computations determine a guidance trajectory and an associated control law for the remainder of path by taking into account the rocket state at time tg. Thus, the overall guidance involves both initial and midcourse operations, and it has both open-... 

    Free vibrations of a cord composite laminate thin cylindrical shell on a pasternak foundation

    , Article 7th European Conference on Structural Dynamics, EURODYN 2008, 7 July 2008 through 9 July 2008 ; 2008 ; 9780854328826 (ISBN) Kargarnovin, M. H ; Mamandi, A ; Younesian, D ; Sharif University of Technology
    University of Southampton, Institute of Sound Vibration and Research  2008
    Abstract
    The underground and buried oil and gas pipelines are continuously in contact with earthen soils on the outer surface and compressible fluids on the inner surface. Most these earthen soils can be appropriately represented by a model named Pasternak. Similarly, undersea oil and gas pipelines and tubes of heat exchangers remain in contact with fluids on both sides and also rockets and missiles filled with solid and liquid fuels and shallow shells supported on soft and light filaments in space vehicles, boilers and storage tanks on floor grid work in ships can also be considered as thin circular cylindrical shells on a Pasternak foundation. The basic aim of the presented study is investigation... 

    Transient conduction prediction in nozzle assembly of solid rocket motors

    , Article 45th AIAA Aerospace Sciences Meeting 2007, Reno, NV, 8 January 2007 through 11 January 2007 ; Volume 4 , 2007 , Pages 2333-2337 ; 1563478900 (ISBN); 9781563478901 (ISBN) Ebrahimi, M ; Tahsini, A. M ; Sharif University of Technology
    2007
    Abstract
    Transient heat-up of a solid propellant rocket structure during motor burning time is studied, numerically. The solid phase energy equation coupled with unsteady compressible flow equations are used in this simulation. The flow-field equations are discretized and solved using upwind Roe's scheme. The results show that heat transfer from the gas phase boundaries has negligible effect on internal ballistics behavior. On the other hand, the results are suitable for a thermal stresses analysis in the chamber case and are consequently valuable from structural design viewpoints  

    Rapid depressurization dynamics of solid propellant rocket motors

    , Article 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, 8 July 2007 through 11 July 2007 ; Volume 8 , 2007 , Pages 7871-7879 ; 1563479036 (ISBN); 9781563479038 (ISBN) Tahsini, A. M ; Farshchi, M ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    Transient internal ballistics of a solid propellant rocket motor during rapid depressurization due to opening of an auxiliary nozzle for active thrust termination has been considered in this work. Prediction of thrust termination and reversing dynamics is required for successful stage separation in multi-stage rockets. Quasi one-dimensional unsteady Euler equation with a transient propellant burning model that accounts for the effects of time rate of change of the chamber pressure on the burning rate have been used to simulate the internal ballistics of a rocket motor. The compressible convective flow solver used in this study is based on Roe's scheme. The effects of rapid chamber pressure... 

    Thrust termination dynamics of solid propellant rocket motors

    , Article Journal of Propulsion and Power ; Volume 23, Issue 5 , 2007 , Pages 1141-1142 ; 07484658 (ISSN) Tahsini, A. M ; Farshchi, M ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    Thrust termination dynamics of a solid propellant rocket motor that is crucial to the performance of the rocket has been analyzed. Active thrust termination or reversing of a separating motor facilitate the staging process and enhance the performance of a multistage rocket. This can be achieved by opening a secondary nozzle located on the motor head and causing rapid depressurization of the motor chamber. The strong dependence of the solid propellant burning rate on the chamber pressure causes a transient nonlinear behavior that can result in premature dynamic extinguishments of the motor. It was confirmed that there is a maximum achievable level of equilibrium reverse thrust due to... 

    Non-steady burning effect on solid rocket motor performance

    , Article 45th AIAA Aerospace Sciences Meeting 2007, Reno, NV, 8 January 2007 through 11 January 2007 ; Volume 14 , 2007 , Pages 9531-9536 ; 1563478900 (ISBN); 9781563478901 (ISBN) Tahsini, A. M ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    Solid rocket performance during rapid pressure excursions differs greatly from predictions based on steady state burning rate data. Rapid pressurization following a chamber filling interval produces indicated burning rate overshoots. Transient internal ballistics of a solid propellant rocket motor during rapid pressurization part of chamber filling phase has been considered in this work. Quasi one-dimensional unsteady Euler equations with a transient propellant burning model that accounts for the effects of time rate of change of the chamber pressure on the burning rate have been used to simulate the internal ballistics of rocket motors. The compressible convective flow solver used in this... 

    Ignition transient simulation in solid propellant rocket motors

    , Article 45th AIAA Aerospace Sciences Meeting 2007, Reno, NV, 8 January 2007 through 11 January 2007 ; Volume 24 , 2007 , Pages 16754-16758 ; 1563478900 (ISBN); 9781563478901 (ISBN) Tahsini, A. M ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    In this paper, the internal ballistics of a solid propellant rocket motor including a pyrogen type igniter is numerically investigated. The aim of the simulation is to calculate the chamber pressure as a function of time, during flame spreading phase. In addition, effects of the igniter flow on the propellant heat-up and ignition are studied in detail using unsteady quasi one-dimensional conservation equations for a working gas, coupled with the transient conduction within a solid propellant. The convective and radiative heat flux from the igniter flow to the solid surface is considered. The flow-field equations are solved using upwind Roe's scheme. The obtained results can be used to design...