Loading...
Search for: salinity
0.006 seconds
Total 217 records

    Interfacial tension and wettability change phenomena during alkali-surfactant interactions with acidic heavy crude oil

    , Article Energy and Fuels ; Vol. 29, issue. 2 , January , 2015 , p. 649-658 ; ISSN: 08870624 Dehghan, A. A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    In this work, a newly formulated sulfonate-based surfactant and two other commercial sulfate-based surfactants with the capability of tolerating harsh underground reservoir conditions, such as high-saline formation water and high temperature, were prepared. Sodium metaborate as an effective alkali compound was also used to provide alkali-surfactant combination. Interfacial tension (IFT) measurements as well as wettability examinations for different salinities and mixture conditions were performed for an extended range of the chemical concentrations. The wettability tests including both contact angle measurements and Amott cell tests were performed on saturated Berea sandstone plug samples... 

    Toward mechanistic understanding of heavy crude oil/brine interfacial tension: The roles of salinity, temperature and pressure

    , Article Fluid Phase Equilibria ; Vol. 375, issue , August , 2014 , p. 191-200 ; ISSN: 03783812 Moeini, F ; Hemmati-Sarapardeh, A ; Ghazanfari, M. H ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Injecting low salinity brines is regarded as an enhanced oil recovery (EOR) process through IFT reduction. However, the exact mechanism behind this process is an unsettled and complex issue that has not been well understood yet, especially for heavy crude oil system. Besides, limited information is available regarding the key heavy oil/brine interfacial tension (IFT). The present study aims to investigate the sensitivity of dead heavy crude oil/brine IFT to a wide range of properties/conditions and to reveal the underlying physicochemical mechanisms involved in enhanced oil recovery and IFT reduction by low salinity water injection into heavy oil reservoir. IFT was measured as a function of... 

    Evaluation of chemicals interaction with heavy crude oil through water/oil emulsion and interfacial tension study

    , Article Energy and Fuels ; Vol. 27, issue. 10 , September , 2013 , p. 5852-5860 ; ISSN: 08870624 Dehghan, A. A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    A newly-designed surfactant was formulated to tolerate the harsh conditions of oil reservoirs, including high salinity of the formation brine and temperature. The specific emulsion and interfacial tension (IFT) behavior of this new surface active agent were investigated by performing emulsion stability tests, emulsion size analysis, and IFT behavior in the presence of four different types of alkalis. Image processing was utilized to analyze the droplet size distribution using microscopic images of the samples. The results show that depending on the composition of the mixtures, the optimum phase region and interfacial tension behavior change considerably. Solutions containing a higher... 

    The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic-acidic crude oil reservoir during smart water injection

    , Article Journal of Chemical and Engineering Data ; Vol. 59, issue. 11 , 2014 , pp. 3624-3634 ; ISSN: 00219568 Lashkarbolooki, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Abstract
    The use of adjusted/optimized saline water categorized into two different classes namely smart water (SW) and low salinity (LoSal) water injection has been proposed for more oil recovery from specific types of oil reservoirs. There are possible mechanisms concerning SW flooding that have been proposed in the literature, some of them are still subject to more examination. In this study, an experimental investigation is performed to determine the influence of type and amount of salt to the surface properties including interfacial tension (IFT) and contact angle (CA) of aqueous solution + acidic and asphaltenic crude oil + carbonate rock systems. For this purpose, the concentration of different... 

    Conceptualization of a fresh groundwater lens influenced by climate change: A modeling study of an arid-region island in the Persian Gulf, Iran

    , Article Journal of Hydrology ; Vol. 519, issue. PA , 2014 , pp. 399-413 ; ISSN: 00221694 Mahmoodzadeh, D ; Ketabchi, H ; Ataie-Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Abstract
    Understanding the fresh groundwater lens (FGL) behavior and potential threat of climatic-induced seawater intrusion (SWI) are significant for the future water resources management of many small islands. In this paper, the FGL of Kish Island, an arid-region case in the Persian Gulf, Iran, is modeled using two-dimensional (2D) and three-dimensional (3D) simulations. These simulations are based on the application of SUTRA, a density-dependent groundwater numerical model. Also, the numerical model parameters are calibrated using PEST, an automated parameter estimation code. Firstly a detailed conceptualization of the FGL model is completed to understand the sensitivity of the FGL to some... 

    Assessment of 2DH and pseudo-3D modelling platforms in a large saline aquatic system: Lake Urmia, Iran

    , Article Hydrological Processes ; Vol. 28, Issue. 18 , 2014 , pp. 49534970 ; ISSN: 10991085 Zeinoddini, M ; Tofighi, M. A ; Bakhtiari, A ; Sharif University of Technology
    Abstract
    The main objective of this paper is to provide comparative quantitative examinations on the capabilities of two-dimensional horizontal and pseudo-three-dimensional (3D) modelling approaches for simulating spatial and temporal variability of the flow and salinity in Lake Urmia, Iran. The water quality in the lake has been an environmentally important subject partly because this shallow hypersaline aquatic ecosystem is considered to be one of the largest natural habitats of a unique multicellular organism, Artemia urmiana. This brine shrimp is the major food source for many of the protected and rare shorebirds that visit the lake. A.urmiana can grow and survive in certain ranges of salinity,... 

    Toward mechanistic understanding of heavy crude oil/brine interfacial tension: The roles of salinity, temperature and pressure

    , Article Fluid Phase Equilibria ; Vol. 375, issue , 2014 , Pages 191-200 ; ISSN: 03783812 Moeini, F ; Hemmati-Sarapardeh, A ; Ghazanfari, M. H ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Injecting low salinity brines is regarded as an enhanced oil recovery (EOR) process through IFT reduction. However, the exact mechanism behind this process is an unsettled and complex issue that has not been well understood yet, especially for heavy crude oil system. Besides, limited information is available regarding the key heavy oil/brine interfacial tension (IFT). The present study aims to investigate the sensitivity of dead heavy crude oil/brine IFT to a wide range of properties/conditions and to reveal the underlying physicochemical mechanisms involved in enhanced oil recovery and IFT reduction by low salinity water injection into heavy oil reservoir. IFT was measured as a function of... 

    Miniaturized salting-out liquid-liquid extraction in a coupled-syringe system combined with HPLC-UV for extraction and determination of sulfanilamide

    , Article Talanta ; Vol. 121 , April , 2014 , pp. 199-204 ; ISSN: 00399140 Sereshti, H ; Khosraviani, M ; Sadegh Amini-Fazl, M ; Sharif University of Technology
    Abstract
    In salting-out liquid-liquid extraction (SALLE) technique, water-miscible organic solvents are used for extraction of polar analytes from saline solutions. In this study, for the first time, a coupled 1-mL syringes system was utilized to perform a miniaturized SALLE method. Sulfanilamide antibiotic was extracted and determined via the developed method followed by high performance liquid chromatography-ultraviolet detection (HPLC-UV). The extraction process was carried out by rapid shooting of acetonitrile as extraction solvent (syringe B) into saline aqueous sample solution (syringe A), and then the shooting was repeated several times at a rate of 1 cycle s-1. Thereby, an extremely large... 

    Role of exchange flow in salt water balance of Urmia Lake

    , Article Dynamics of Atmospheres and Oceans ; Vol. 65, issue , 2014 , pp. 1-16 ; ISSN: 03770265 Marjani, A ; Jamali, M ; Sharif University of Technology
    Abstract
    In this paper we examine how exchange flow in Urmia Lake plays a crucial role in dynamics of the lake. Urmia Lake, a very large hyper-saline lake of high ecological significance, is located in northwest of Iran with a 15-km causeway dividing it into north and south lakes. A 1250-m opening in the causeway near the east coast links the two lakes. The differences in mean water levels and densities of the two lakes increase in spring due to large freshwater inflows into the south lake. High evaporation dominates the lake in summer. By incorporating the results of a two-layer hydraulics theory into a mixing model of the lake, we show that the exchange flow through the opening diminishes the water... 

    Biological removal of phenol from saline wastewater using a moving bed biofilm reactor containing acclimated mixed consortia

    , Article SpringerPlus ; Vol. 3, issue. 1 , 2014 , pp. 1-10 ; ISSN: 21931801 Nakhli, S. A. A ; Ahmadizadeh, K ; Fereshtehnejad, M ; Rostami, M. H ; Safari, M ; Borghei, S. M ; Sharif University of Technology
    Abstract
    In this study, the performance of an aerobic moving bed biofilm reactor (MBBR) was assessed for the removal of phenol as the sole substrate from saline wastewater. The effect of several parameters namely inlet phenol concentration (200-1200 mg/L), hydraulic retention time (8-24 h), inlet salt content (10-70 g/L), phenol shock loading, hydraulic shock loading and salt shock loading on the performance of the 10 L MBBR inoculated with a mixed culture of active biomass gradually acclimated to phenol and salt were evaluated in terms of phenol and chemical oxygen demand (COD) removal efficiencies. The results indicated that phenol and COD removal efficiencies are affected by HRT, phenol and salt... 

    Sampling efficiency in Monte Carlo based uncertainty propagation strategies: Application in seawater intrusion simulations

    , Article Advances in Water Resources ; Vol. 67, issue , 2014 , pp. 46-64 Rajabi, M. M ; Ataie-Ashtiani, B ; Sharif University of Technology
    Abstract
    The implementation of Monte Carlo simulations (MCSs) for the propagation of uncertainty in real-world seawater intrusion (SWI) numerical models often becomes computationally prohibitive due to the large number of deterministic solves needed to achieve an acceptable level of accuracy. Previous studies have mostly relied on parallelization and grid computing to decrease the computational time of MCSs. However, another approach which has received less attention in the literature is to decrease the number of deterministic simulations by using more efficient sampling strategies. Sampling efficiency is a measure of the optimality of a sampling strategy. A more efficient sampling strategy requires... 

    Reduction of fine migration in different pH and salinity conditions using nanofluid

    , Article SPE - European Formation Damage Conference, Proceedings, EFDC ; Volume 2 , 2013 , Pages 737-743 ; 9781627486101 (ISBN) Asset, Y ; Pourafshary, P ; Ayatollahi, S ; Sharif University of Technology
    2013
    Abstract
    Movement and transportation of fine particles in formations leads to clogging the pores and reduction in permeability. This type of formation damage is stronglycontingent upon water salinity and ionic conditions in the formation. The main parameters which control the particle release are the interactions and forces between particles and porous medium surfaces. Changing salinity which leads to pH alteration, affects these interactions and subsequently the fine migration process. Hence, pH and salinity variations should be considered to study and evaluate the portion of fine migration in formation damage. The principal challenge in this research therefore, is to try to change the surface... 

    Inverse modelling for freshwater lens in small islands: Kish Island, Persian Gulf

    , Article Hydrological Processes ; Volume 27, Issue 19 , 2013 , Pages 2759-2773 ; 08856087 (ISSN) Ataie Ashtiani, B ; Rajabi, M. M ; Ketabchi, H ; Sharif University of Technology
    2013
    Abstract
    A number of challenges including instability, nonconvergence, nonuniqueness, nonoptimality, and lack of a general guideline for inverse modelling have limited the application of automatic calibration by generic inversion codes in solving the saltwater intrusion problem in real-world cases. A systematic parameter selection procedure for the selection of a small number of independent parameters is applied to a real case of saltwater intrusion in a small island aquifer system in the semiarid region of the Persian Gulf. The methodology aims at reducing parameter nonuniqueness and uncertainty and the time spent on inverse modelling computations. Subsequent to the automatic calibration of the... 

    Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation

    , Article Remote Sensing of Environment ; Volume 136 , 2013 , Pages 374-385 ; 00344257 (ISSN) Sima, S ; Ahmadalipour, A ; Tajrishy, M ; Sharif University of Technology
    2013
    Abstract
    Remote sensing is an effective tool for capturing spatial and temporal variations of water surface temperature (WST) in large lakes. The WST of Urmia Lake in northwestern Iran was examined from 2007 to 2010, using MODIS land surface temperature (LST) products. Spatial and temporal (diurnal, monthly, seasonal and inter-annual) variations of Urmia Lake WST were also investigated. Results indicate that the MODIS-derived WSTs are in a good agreement with the in situ data (R2=0.92 and bias=-0.27). Spatial analysis of WST revealed that there are three thermal zones along the lake: the shallow region in barriers of the causeway, islands and the shoreline; the south part; and the deep north parts.... 

    Experimental and numerical investigation of polymer flooding in fractured heavy oil five-spot systems

    , Article Journal of Petroleum Science and Engineering ; Volume 108 , 2013 , Pages 370-382 ; 09204105 (ISSN) Sedaghat, M. H ; Ghazanfari, M. H ; Masihi, M ; Rashtchian, D ; Sharif University of Technology
    2013
    Abstract
    Microscopic and macroscopic displacements of polymer flooding to heavy oil at various levels of salinity and connate water saturation have been investigated. Both oil-wet and water-wet conditions in fractured five-spot micromodel systems, initially saturated with the heavy crude oil are utilized. The primary contribution is to examine the role of salinity, wettability, connate water, and fracture geometry in the recovery efficiency of the system. The microscopic results revealed that the increase in the connate water saturation decreases the oil recovery, independent of the wettability conditions. Moreover, the increase in salinity of the injected fluids lowers the recovery efficiency due to... 

    Using satellite data to extract volume-area-elevation relationships for Urmia Lake, Iran

    , Article Journal of Great Lakes Research ; Volume 39, Issue 1 , March , 2013 , Pages 90-99 ; 03801330 (ISSN) Sima, S ; Tajrishy, M ; Sharif University of Technology
    2013
    Abstract
    Urmia Lake in the northwest of Iran is the second largest hyper-saline lake worldwide. During the past two decades, a significant water level decline has occurred in the lake. The existing estimations for the lake water balance are widely variable because the lake bathymetry is unknown. The main focus of this study is to extract the volume-area-elevation (V-A-L) characteristics of Urmia Lake utilizing remote sensing data and analytical models. V-A-L equations of the lake were determined using radar altimetry data and their concurrent satellite-derived surface data. Next, two approximate models, a power model (PM) and a truncated pyramid model (TPM), were parameterized for Urmia Lake and... 

    Evaluating the effect of ultrasmall superparamagnetic iron oxide nanoparticles for a long-term magnetic cell labeling

    , Article Journal of Medical Physics ; Volume 38, Issue 1 , 2013 , Pages 34-40 ; 09716203 (ISSN) Shanehsazzadeh, S ; Oghabian, M. A ; Allen, B. J ; Amanlou, M ; Masoudi, A ; Daha, F. J ; Sharif University of Technology
    2013
    Abstract
    In order to evaluate the long-term viability, the iron content stability, and the labeling efficiency of mammalian cells using magnetic cell labeling; dextran-coated ultrasmall superparamagnetic iron oxide (USPIOs) nanoparticles with plain surfaces having a hydrodynamic size of 25 nm were used for this study. Tests were carried out in four groups each containing 5 flasks of 5.5 × 10 6 AD-293 embryonic kidney cells. The cell lines were incubated for 24 h using four different iron concentrations with and without protamine sulfate (Pro), washed with phosphate-buffered saline (PBS) and centrifuged three times to remove the unbounded USPIOs. Cell viability was also verified using USPIOs. There... 

    Cell life cycle effects of bare and coated superparamagnetic iron oxide nanoparticles

    , Article Toxic Effects of Nanomaterials ; 2012 , Pages 53-66 ; 9781608054213 (ISBN) Mahmoudi, M ; Laurent, S ; Journeay, W. S ; Sharif University of Technology
    2012
    Abstract
    Due to the hopeful potential of nanoparticles in medicine, they have attracted much attention for various applications such as targeted drug/gene delivery, separation or imaging. Interaction of NPs with the biological environment can lead to a wide range of cellular responses. In order to have safe NPs for biomedical applications, the current biocompatibility researches are particularly focused on the severe toxic mechanisms which cause cells death. These mechanisms are apoptosis, autophagy and necrosis, which can also be intricately linked with the cell-life cycle, as there are various check-points and controls in a cell's life cycle to ensure appropriate division processes. Mechanisms by... 

    Experimental investigation of CO2 WAG injection to light crude oil in near miscible conditions

    , Article 74th European Association of Geoscientists and Engineers Conference and Exhibition 2012 Incorporating SPE EUROPEC 2012: Responsibly Securing Natural Resources, 4 June 2012 through 7 June 2012 ; 2012 , Pages 3914-3918 ; 9781629937908 (ISBN) Shahrokhi, O ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2012
    Abstract
    This work concerns with experimental investigation of CO2 WAG injection to light crude oil in near miscible conditions which has been rarely attended in the available literature. Here, several core flood experiments at three constant injection rates and four WAG ratios are conducted on sandstone rocks saturated with light crude oil in presence of saline water. The results showed that higher injection rate has a better performance regarding oil recovery for smaller PVs of injected fluids, while lower injection rate showed higher ultimate recovery for a 30% increase in injected PVs. Secondary continuous gas injection showed a superior performance than all the other WAG injections in different... 

    Treatment of oilfield produced water by dissolved air precipitation/solvent sublation

    , Article Journal of Petroleum Science and Engineering ; Volume 80, Issue 1 , 2011 , Pages 26-31 ; 09204105 (ISSN) Bayati, F ; Shayegan, J ; Noorjahan, A ; Sharif University of Technology
    Abstract
    Dissolved air precipitation/solvent sublation (DAP/SS) was used for treatment of simulated and real oilfield produced water to generate very fine bubbles which are necessary for effective separation. In this method micro bubbles produced by saturation of air in a pressurized packed column were released in an atmospheric column leading the bubbles to raise resulting trapped contaminants in the Gibbs layer around them to be removed by a layer of immiscible solvent at the top of column. The method was conducted to solutions including Benzene, Toluene and Chlorobenzene (ClB) as part of BTEX contaminants in produced water, mixture of them as simulated produced water and real oilfield produced...