Loading...
Search for: silver
0.014 seconds
Total 323 records

    A review on catalytic reduction/degradation of organic pollution through silver-based hydrogels

    , Article Arabian Journal of Chemistry ; Volume 15, Issue 9 , 2022 ; 18785352 (ISSN) Dadashi, J ; Ali Ghasemzadeh, M ; Alipour, S ; Zamani, F ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Various challenging pollutants are produced in the environment by organic materials of diverse industries including leather, paint, and textile. Nowadays, it is vital to develop efficient manners regarding the fundamental issues and removing pollutants. Such pollutants can be effectively removed from the environment through heterogeneous catalysts. Recently, a huge deal of interest has been attracted by hydrogel-based metal catalysts as heterogeneous and efficient catalysts. In this regard, silver with its unique features is suitable for environmental remediation. Hence, the present review deals with summarizing the present advances in the synthesis of silver-based hydrogel catalysts, as... 

    Curcumin sustained release with a hybrid chitosan-silk fibroin nanofiber containing silver nanoparticles as a novel highly efficient antibacterial wound dressing

    , Article Nanomaterials ; Volume 12, Issue 19 , 2022 ; 20794991 (ISSN) Heydari Foroushani, P ; Rahmani, E ; Alemzadeh, I ; Vossoughi, M ; Pourmadadi, M ; Rahdar, A ; Díez Pascual, A. M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Drug loading in electrospun nanofibers has gained a lot of attention as a novel method for direct drug release in an injury site to accelerate wound healing. The present study deals with the fabrication of silk fibroin (SF)-chitosan (CS)-silver (Ag)-curcumin (CUR) nanofibers using the electrospinning method, which facilitates the pH-responsive release of CUR, accelerates wound healing, and improves mechanical properties. Response surface methodology (RSM) was used to investigate the effect of the solution parameters on the nanofiber diameter and morphology. The nanofibers were characterized via Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron... 

    The effect of Ag incorporation on the characteristics of the polymer derived bioactive silicate phosphate glass-ceramic scaffolds

    , Article Boletin de la Sociedad Espanola de Ceramica y Vidrio ; Volume 61, Issue 6 , 2022 , Pages 653-663 ; 03663175 (ISSN) Paryab, A ; Godary, T ; Khalilifard, R ; Malek Khachatourian, A ; Abdollahi, F ; Abdollahi, S ; Sharif University of Technology
    Sociedad Espanola de Ceramica y Vidrio  2022
    Abstract
    In the bone tissue engineering field (BTE), it is of significant importance to develop bioactive multifunctional scaffolds with enhanced osteoconductivity, osteoinductivity, and antibacterial properties required for lost bone tissue regeneration. In this work, a bioactive glass-ceramic scaffold was manufactured via a novel polymer-derived ceramics (PDC) manufacturing method. To gain antibacterial properties, the silver ions were incorporated in controlled amount along with other precursors in the PDC processing stage. Microstructural and structural properties of the fabricated silicate-phosphate glass-ceramic scaffold were evaluated by scanning electron microscopy (SEM) equipped with energy... 

    Electrospun Ag-decorated reduced GO-graft-chitosan composite nanofibers with visible light photocatalytic activity for antibacterial performance

    , Article Chemosphere ; Volume 299 , 2022 ; 00456535 (ISSN) Asgari, S ; Mohammadi Ziarani, G ; Badiei, A ; Setayeshmehr, M ; Kiani, M ; Pourjavadi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The treatment of water contaminated by bacteria is becoming a necessity. The nanomaterials possessing both intrinsic antibacterial properties and photocatalytic activity are excellent candidates for water disinfection. The powdered form of nanomaterials can be aggregated while embedding the nanomaterials into the NFs can overcome the limitation and enhance the photocatalytic activity and transition from UV-light to visiblelight. Here, graphene oxide (GO) was synthesized, grafted to chitosan, and decorated with silver nanoparticles (Ag NPs) to produce Ag-decorated reduced GO-graft-Chitosan (AGC) NPs. The blends of polyacrylonitrile (PAN) and AGC NPs were prepared in various concentrations of... 

    Plasmon-induced near-infrared fluorescence enhancement of single-walled carbon nanotubes

    , Article Carbon ; Volume 194 , 2022 , Pages 162-175 ; 00086223 (ISSN) Amirjani, A ; Tsoulos, T. V ; Sajjadi, S. H ; Antonucci, A ; Wu, S. J ; Tagliabue, G ; Fatmehsari Haghshenas, D ; Boghossian, A. A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Single-walled carbon nanotubes (SWCNTs) emit near-infrared (NIR) fluorescence that is ideal for optical sensing. However, the low quantum yields diminish the sensor's signal-to-noise ratio and limits the penetration depths for in vivo measurements. In this study, we perform a systematic investigation of the plasmonic effects of Ag and Au nanoparticles of various geometries to tune and even enhance the fluorescence intensity of single-stranded DNA-wrapped SWCNTs (ssDNA-SWCNTs). We observe a chirality-dependent NIR fluorescence enhancement that varies with both nanoparticle shape and material, with Au nanorods increasing (7, 5) and (7, 6) chirality emissions by 80% and 60% and Ag nanotriangles... 

    Development of a colorimetric sensor array based on monometallic and bimetallic nanoparticles for discrimination of triazole fungicides

    , Article Analytical and Bioanalytical Chemistry ; Volume 414, Issue 18 , 2022 , Pages 5297-5308 ; 16182642 (ISSN) Kalantari, K ; Fahimi Kashani, N ; Hormozi Nezhada, M. R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Due to the widespread use of pesticides and their harmful effects on humans and wildlife, monitoring their residual amounts in crops is critically essential but still challenging regarding the development of high-throughput approaches. Herein, a colorimetric sensor array has been proposed for discrimination and identification of triazole fungicides using monometallic and bimetallic silver and gold nanoparticles. Aggregation-induced behavior of AgNPs, AuNPs, and Au-AgNPs in the presence of four triazole fungicides produced a fingerprint response pattern for each analyte. Innovative changes to the metal composition of nanoparticles leads to the production of entirely distinct response patterns... 

    Multifunctional Ag/AgCl/ZnTiO3 structures as highly efficient photocatalysts for the removal of nitrophenols, CO2 photoreduction, biomedical waste treatment, and bacteria inactivation

    , Article Applied Catalysis A: General ; Volume 643 , 2022 ; 0926860X (ISSN) Padervand, M ; Ghasemi, S ; Hajiahmadi, S ; Rhimi, B ; Nejad, Z. G ; Karima, S ; Shahsavari, Z ; Wang, C ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Over the past few decades, biological hazards and organic pollution have become major environmental concerns. Photocatalysis has been found to be effective in minimizing the negative impacts of these issues in air and water. Lozenge shape Ag/AgCl/ZnTiO3 photocatalysts were fabricated by a facile two-step synthesis method, including hydrothermal and coprecipitation. The physicochemical characteristics and morphological properties of the structures were comprehensively described taking advantage of a multi-technique approach. The prepared photocatalysts offered excellent nitrophenol mineralization (>90%) after 90 min of visible light irradiation. Based on the spin-trapping ESR technique, •O2̅–... 

    SPR-based assay kit for rapid determination of Pb2+

    , Article Analytica Chimica Acta ; Volume 1220 , 2022 ; 00032670 (ISSN) Amirjani, A ; Kamani, P ; Madaah Hosseini, H. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    A recyclable optical nanosensor was developed by immobilizing L-tyrosine functionalized silver nanoparticles (AgNPs) on the polyethylene terephthalate (PET) substrate for rapid determination of Pb2+ ions. At first, the L-tyrosine functionalized AgNPs were assessed in the solution phase; the response time was lower than 15 s, and a limit of detection lower than 9 nM was obtained in the dynamic range of 1–1000 nM. For fabrication of the optical assay kit, the design of experiment (DOE) was used to optimize the immobilization efficiency of the nanoparticles on PET films by studying AgNO3 concentration and pH as two crucial parameters. The assay kit in optimal conditions showed a sharp localized... 

    Thermal characteristics of kerosene oil-based hybrid nanofluids (Ag-MnZnFe2O4): A comprehensive study

    , Article Frontiers in Energy Research ; Volume 10 , 2022 ; 2296598X (ISSN) Ahmad, S ; Ali, K ; Haider, T ; Jamshed, W ; Tag El Din, E. S. M ; Hussain, S. M ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    Hybrid nanofluids are new and most fascinating types of fluids that involve superior thermal characteristics. These fluids exhibit better heat-transfer performance as equated to conventional fluids. Our concern, in this paper, is to numerically interpret the kerosene oil-based hybrid nanofluids comprising dissimilar nanoparticles like silver (Ag) and manganese zinc ferrite (MnZnFe2O4). A numerical algorithm, which is mainly based on finite difference discretization, is developed to find the numerical solution of the problem. A numerical comparison appraises the efficiency of this algorithm. The effects of physical parameters are examined via the graphical representations in either case of... 

    Gold nanorods for drug and gene delivery: An overview of recent advancements

    , Article Pharmaceutics ; Volume 14, Issue 3 , 2022 ; 19994923 (ISSN) Jahangiri Manesh, A ; Mousazadeh, M ; Taji, S ; Bahmani, A ; Zarepour, A ; Zarrabi, A ; Sharifi, E ; Azimzadeh, M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Over the past few decades, gold nanomaterials have shown great promise in the field of nanotechnology, especially in medical and biological applications. They have become the most used nanomaterials in those fields due to their several advantageous. However, rod-shaped gold nanoparticles, or gold nanorods (GNRs), have some more unique physical, optical, and chemical properties, making them proper candidates for biomedical applications including drug/gene delivery, photothermal/photodynamic therapy, and theranostics. Most of their therapeutic applications are based on their ability for tunable heat generation upon exposure to near-infrared (NIR) radiation, which is helpful in both... 

    Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria

    , Article Materials ; Volume 15, Issue 5 , 2022 ; 19961944 (ISSN) Rabiee, N ; Ahmadi, S ; Akhavan, O ; Luque, R ; Sharif University of Technology
    MDPI  2022
    Abstract
    Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles’ physicochemical properties and potential antimicrobial activity. The... 

    Simple SPR-based colorimetric sensor to differentiate Mg2+ and Ca2+ in aqueous solutions

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 268 , 2022 ; 13861425 (ISSN) Amirjani, A ; Salehi, K ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    L-tryptophan functionalized AgNPs were successfully fabricated using a one-pot synthesis method and assessed as a colorimetric probe for rapid and accurate determination of Mg2+ ions. The developed sensor showed a selective response towards Mg2+ with no interference from Ca2+ in the wide concentration range of 1–200 µM. The sensor's response was optimized in the pH range of 9–10, which can be attributed to the protonation of amine groups and their interaction with Mg2+ ions. The stability and selectivity of the sensor were examined in different salt (NaCl) and other metal ions, respectively. The L-tryptophan-AgNPs sensor detected Mg2+ with the limit of detection of 3 µM, which is way lower... 

    Multilayered mesoporous composite nanostructures for highly sensitive label-free quantification of cardiac troponin-i

    , Article Biosensors ; Volume 12, Issue 5 , 2022 ; 20796374 (ISSN) Saeidi, M ; Amidian, M. A ; Sheybanikashani, S ; Mahdavi, H ; Alimohammadi, H ; Syedmoradi, L ; Mohandes, F ; Zarrabi, A ; Tamjid, E ; Omidfar, K ; Simchi, A ; Sharif University of Technology
    MDPI  2022
    Abstract
    Cardiac troponin-I (cTnI) is a well-known biomarker for the diagnosis and control of acute myocardial infarction in clinical practice. To improve the accuracy and reliability of cTnI electrochemical immunosensors, we propose a multilayer nanostructure consisting of Fe3O4-COOH labeled anti-cTnI monoclonal antibody (Fe3O4-COOH-Ab1 ) and anti-cTnI polyclonal antibody (Ab2 ) conjugated on Au-Ag nanoparticles (NPs) decorated on a metal–organic framework (Au-Ag@ZIF-67-Ab2 ). In this design, Fe3O4-COOH was used for separation of cTnI in specimens and signal amplification, hierarchical porous ZIF-67 extremely enhanced the specific surface area, and Au-Ag NPs synergically promoted the conductivity... 

    A wide-range pH indicator based on colorimetric patterns of gold@silver nanorods

    , Article Sensors and Actuators B: Chemical ; Volume 358 , 2022 ; 09254005 (ISSN) Orouji, A ; Abbasi Moayed, S ; Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The potential of hydrogen (pH) is a basic and critical parameter representing the function of numerous chemicals/biomolecules. Due to the widespread applications of pH in diverse fields, the development of rapid and simple yet reliable probes for the determination of pH has attracted significant interest. In this paper, by using AuNRs, silver ions, and ascorbic acid as colorimetric pH sensor, a multicolorimetric nanosensor is described for pH measurement. The reduction of silver ions by ascorbic acid which is strongly influenced by pH, results in silver nanoshell deposition on the surface of AuNRs. Consequently, the formation of Au@Ag core-shell NRs causes a series of blue shifts in the... 

    Plasmon-enhanced photocatalytic activity in the visible range using AgNPs/polydopamine/graphitic carbon nitride nanocomposite

    , Article Applied Surface Science ; Volume 585 , 2022 ; 01694332 (ISSN) Shahsavandi, F ; Amirjani, A ; Reza Madaah Hosseini, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Developing an efficient visible-light-driven photocatalyst is believed to be a practical solution for clean energy and environmental remediation. The present study aimed to broaden current knowledge of the graphitic carbon nitride (g-C3N4)-based plasmonic photocatalysts by decorating polydopamine-grafted g-C3N4 (PDA/g-C3N4) with silver nanoparticles (AgNPs). The nanocomposite was prepared using a facile synthesis method, while XPS and microscopy measurements confirmed the homogenous dispersion of AgNPs on PDA/g-C3N4. AgNPs successfully reduced the recombination rate of photoinduced electron-hole pairs. The calculated bandgap energy was decreased from 2.7 eV for pure g-C3N4 to 2.1 eV for... 

    Ag-incorporated biodegradable Mg alloys

    , Article Materialia ; Volume 23 , 2022 ; 25891529 (ISSN) Mohammadi Zerankeshi, M ; Alizadeh, R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Biodegradable magnesium implants possess excellent mechanical properties and biocompatibility, which make them suitable candidates to be employed as temporary structures for the bone regeneration purposes. However, there are still important challenges which limit their extensive use in biomedical applications, where the most important ones include implant-associated infection, rapid degradation rate and the need for improved mechanical properties. Silver, which is a strong antimicrobial agent, has been extensively used for improving the mentioned challenges in biodegradable Mg alloys either as alloying element or incorporation in the protective coating. Ag addition has been reported to have... 

    Detection of molecular vibrations of atrazine by accumulation of silver nanoparticles on flexible glass fiber as a surface-enhanced Raman plasmonic nanosensor

    , Article Optical Materials ; Volume 128 , 2022 ; 09253467 (ISSN) Eskandari, V ; Kordzadeh, A ; Zeinalizad, L ; Sahbafar, H ; Aghanouri, H ; Hadi, A ; Ghaderi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Surface-Enhanced Raman Spectroscopy (SERS) is a sensitive vibration spectroscopy method applied to analyze a variety of analytes, including toxins and pesticides. The SERS method is an accurate method for detecting significantly low concentrations of biomaterials and chemicals. In the present study, in order to detect atrazine pesticide, the glass fiber substrates coated with silver nanoparticles have been used as SERS plasmonic nanosensors. First, silver nanoparticles were prepared by applying a chemical approach named the Tollens' method, and the SERS plasmonic substrates (SPS) were fabricated by depositing the colloidal silver solution on a glass fiber substrate. The SERS plasmonic... 

    Finite and boundary element methods for simulating optical properties of plasmonic nanostructures

    , Article Plasmonics ; Volume 17, Issue 3 , 2022 , Pages 1095-1106 ; 15571955 (ISSN) Amirjani, A ; Zamanpour Abyaneh, P ; Azaripoor Masouleh, P ; Sadrnezhaad, S. K ; Sharif University of Technology
    Springer  2022
    Abstract
    In this study, a numerical investigation was done on the optical properties of silver nanostructures using the boundary element method (BEM) and finite element method (FEM). The BEM simulation was done using a freely available code called MNBEM in MATLAB with minor modifications. The FEM simulation was done by Comsol Multiphysics, a commercial software package. Silver nanostructures in the sphere, rod, and triangle geometries and the presence of different polarization angles were compared between these two methods. According to the obtained results, the absorption cross-sections for both BEM and FEM were consistent with their actual optical properties. For instance, both longitudinal and... 

    Synergistic Wound Healing by Novel Ag@ZIF-8 Nanostructures

    , Article International Journal of Pharmaceutics ; Volume 629 , 2022 ; 03785173 (ISSN) Barjasteh, M ; Mohsen Dehnavi, S ; Ahmadi Seyedkhani, S ; Yahya Rahnamaee, S ; Golizadeh, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this paper, novel zeolitic imidazolate framework-8 (ZIF-8) functionalized with Ag (Ag@ZIF-8) nanoparticles were synthesized through a green, facile and environmental-friendly process for wound dressing applications. X-ray diffraction revealed that the ZIF-8 and Ag@ZIF-8 were successfully synthesized by green solvents at ambient temperature. Field-emission scanning electron microscopy indicated a homogeneous porous blend of ∼30 nm chitosan/bacterial cellulose (CS/BC) nanofibers embedded with ∼80–110 nm nanoparticles of the ZIF-8 and Ag@ZIF-8. Transmission electron microscopy revealed the Ag@ZIF-8 nanostructures consist of ZIF-8 cores that are covered by 5–20 nm Ag nanoparticles. MTT assay... 

    Development of HAp/GO/Ag coating on 316 LVM implant for medical applications

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 126 , 2022 ; 17516161 (ISSN) Ahmadi, R ; Izanloo, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, antibacterial activity, biocompatibility, and corrosion resistance of 316 LVM implants were improved using the development of HAp/GO/Ag nanocomposite coatings by the dip-coating method. The XRD and FTIR results confirmed the synthesis of HAp/GO/Ag nanocomposites. HAp/Ag nanoparticles (68 nm) bound to epoxy, hydroxyl, and carboxyl functional groups on GO sheets (size of GO sheets varies from 255 to 1480 nm) by electrostatic interaction. FESEM images showed that HAp/GO/Ag coatings had higher density and fewer micro-cracks than pure HAp coatings. In addition, HAp/GO/Ag coatings showed optimized nano-hardness (4.5 GPa) and elasticity modulus (123 GPa). The results of...