Loading...
Search for: small-scale
0.012 seconds
Total 53 records

    Stability Analysis of Hybrid Nanotubes Based on the Nonlocal Continuum Theories

    , M.Sc. Thesis Sharif University of Technology Rafati Heravi, Jacob (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Strong van der Waals (vdW) potential fields of carbon nanotubes (CNTs) makes them capable to encapsulate some nanostructures inside their hollow space, which leads to the construction of new hybrid nanostructures under specific conditions. Carbon nano-peapods, carbon nanowires and the hybrid of DNA and CNT are the main categories of hybrid nanostructures of CNT. Characteristics of hybrid nanotubes are unique and different from those of CNT. In nanostructures, the lattice spacing between individual atoms is considerable with respect to the structural dimensions. Also, the range of internal characteristic length is relatively close to external ones. So that utilizing the classical continuum... 

    Investigation of Flow Field in a Small-Scale Cleanroom by Design and Implementation of Stereoscopic Particle Image Velocimetry

    , M.Sc. Thesis Sharif University of Technology Asadi, Masoud (Author) ; Saidi, Mohammad Hasan (Supervisor) ; Zabetian Toroghi, Mohammad (Co-Supervisor)
    Abstract
    The air distribution is the main factor of contaminant transportation in cleanrooms. The experimental method is the most reliable one for investigation of flow field, which the difficulties associated with it, has limited not only the examination of the flow field in cleanrooms, but also the improvement of their qualities. Most of the experimental researches in indoor air quality concern conventional rooms and do not take into account specific supply-exhaust diffuser configurations, which are used in cleanrooms. Using small-scale models can reduce the complexity and the cost of measurements. In this research, the 3D velocity field of a small-scale cleanroom is measured in three different... 

    Modeling and Analysis of D2D Data Offloading

    , M.Sc. Thesis Sharif University of Technology Karami, Farzan (Author) ; Ashtiani, Farid (Supervisor) ; Mirmohseni, Mahtab (Co-Advisor)
    Abstract
    The increase in mobile data traffic adversely affects the quality of service experienced by mobile users. Moreover, the cost incurred by developing infrastructure exceeds its profit. Therefore, there is a trend toward finding cost effective schemes to cope with increase in mobile data traffic. One of the recent elegant solutions is mobile data offloading based on D2D communications. In this thesis, we propose a new offloading scheme using D2D communications for delay-tolerant services. In this regard, we assume a common file is demanded by a subset of users in different time instances and we accumulate demands to serve them in a scheme where devices are divided into non-overlapping... 

    Analysis of Micro Rotating Disk with Angular Acceleration Based on the Non-Classical Continuum Mechanics

    , M.Sc. Thesis Sharif University of Technology Bagheri, Emadoddin (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Incapability of the classical continuum mechanics theory to justify the experimental observations of the mechanical response of the small-scale structures and parts motivated the researchers to pursue the introduction and utilization of the non-classical continuum theories for analysis and design of such structures and parts. In this paper, utilizing the modified couple stress theory and the strain gradient theory as well-known and powerful non-classical continuum theories, the mechanical response, including the displacement and stress fields, for micro-rotating disks with angular acceleration is investigated. The governing differential equations of motion and the corresponding boundary... 

    Design, Construction and Experimental Study of Effect of a Pressure Intensifier Device on a Small Scale Reverse Osmosis System

    , M.Sc. Thesis Sharif University of Technology Bolhassani, Mohammad (Author) ; Arghavani Hadi, Jamal (Supervisor)
    Abstract
    Nowadays, water and energy shortage is the main concern of many industries. Every saving that could be done is valuable. In the first step of this project, energy recovery devices that are used in reverse osmosis systems, are reviewed and advantages and disadvantages of each system are investigated. These apparatuses save energy by recovering high-pressure energy from leaving brine and reduce the energy consumption of the device. The main focus of this study is energy consumption of the device that is used for desalination of seawater in reverse osmosis systems and on this basis, different energy recovery devices are compared. According to the investigation, results showed that most of the... 

    Design of a Hybrid Residential Compressed Air Energy Storage System Focusing on Its Economic Considerations

    , M.Sc. Thesis Sharif University of Technology Khedmati, Amir Reza (Author) ; Saeedi, Mohammad Hassan (Supervisor)
    Abstract
    In recent years, energy storage systems have received widespread attention from researchers to increase the reliability of the power grid. These systems have different types that compressed air system is of special importance due to its high stored energy and long life. In this system, the surplus of electricity generated from renewable energy sources or grid electricity at low power consumption is compressed and stored in a tank. When there is a need for power consumption or peak power consumption, compressed air will generate electricity by passing through the turbine and will help the network. Large-scale type of the system requires special geographical location for air storage; for this... 

    Excursion Set Theory Application in Large Scale Structure Formation

    , Ph.D. Dissertation Sharif University of Technology Kameli, Hamed (Author) ; Baghram, Shant (Supervisor) ; Rahvar, Sohrab (Supervisor)
    Abstract
    The standard model of cosmology with Cold Dark Matter (CDM) and cosmological constant ΛCDM, Despite its achievement and success, confronts some important open questions and challenges such as Dark Matter (DM) nature, small scale structure challenge, $H_0$ tension and, etc. In this dissertation, we study the formation and growth of Large Scale Structure (LSS) as one of the most important cosmological observables. Then we propose some solutions to these questions and challenges. We use the Excursion Set Theory (EST) to study the LSS and calculate the LSS observable such as first up-crossing of trajectories from density contrast barrier, the number density of DM halos, conditional number... 

    Flexural vibration characteristics of micro-rotors based on the strain gradient theory

    , Article International Journal of Applied Mechanics ; Volume 7, Issue 5 , October , 2015 ; 17588251 (ISSN) Asghari, M ; Hashemi, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2015
    Abstract
    In this paper, the coupled three-dimensional flexural vibration of micro-rotors is investigated by taking into account the small-scale effects utilizing the strain gradient theory, which is a powerful nonclassical continuum theory in capturing small-scale effects. A micro-rotor consists mainly of a flexible micro-rotating shaft and a disk. With the aid of Hamilton's principle, governing equations of motion are derived and then transformed to the complex form. By implementing the Galerkin's method, a coupled ordinary differential equation is attained for the system. Expressions for the first two natural frequencies of the spinning micro-rotors are obtained with truncated two-term equation.... 

    On dynamic pull-in instability of electrostatically actuated multilayer nanoresonators: A semi-analytical solution

    , Article ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik ; Volume 99, Issue 9 , 2019 ; 00442267 (ISSN) Taati, E ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    Based on the nonlocal Euler–Bernoulli beam theory, a theoretical approach is developed to investigate the effects of small scale and intermolecular force on the dynamic pull-in behavior of electrostatically actuated nanoresonators. To this purpose, nanoresonators are modeled as multilayer beams with rectangular cross-sections and fixed-fixed and fixed-free end conditions which are embedded in an elastic medium containing Winkler and Pasternak elastic foundations. Also, the effects of nonlocal parameter, fringing field due to the finite width of beams, Casimir or van der Waals intermolecular forces, nonlinear term induced by mid-plane stretching and Winkler and Pasternak elastic foundations... 

    Operation of multi-carrier microgrid (MCMG) considering demand response

    , Article Journal of Operation and Automation in Power Engineering ; Volume 7, Issue 1 , 2019 , Pages 119-128 ; 23224576 (ISSN) Amir, V ; Jadid, S ; Ehsan, M ; Sharif University of Technology
    University of Mohaghegh Ardabili, Faculty of Electrical Engineering  2019
    Abstract
    In this paper, the operation of a future distribution network is discussed under the assumption of a multi-carrier microgrid (MCMG) concept. The new model considers a modern energy management technique in electricity and natural gas networks based on a novel demand side management (DSM) which the energy tariff for responsive loads are correlated to the energy input of the network and changes instantly. The economic operation of MCMG is formulated as an optimization problem. In conventional studies, energy consumption is optimized from the perspective of each infrastructure user without considering the interactions. Here, the interaction of energy system infrastructures is considered in the... 

    Potentials of plastic optical fibers for sensor technology

    , Article Multi-functional Materials and Structures - International Conference on Multifunctional Materials and Structures, Hong Kong, P.R., 28 July 2008 through 31 July 2008 ; Volume 47-50 PART 1 , 2008 , Pages 161-164 ; 10226680 (ISSN); 0878493786 (ISBN); 9780878493784 (ISBN) Golnabi, H ; Kavei, M ; Azizi, Kh ; Sharif University of Technology
    Trans Tech Publications  2008
    Abstract
    Optical fibers, in particular, glass fibers, are mostly used in the field of optical communication, however in recent years new optical sensors based on the optical fibers have been reported in literature and produced commercially. Extrinsic and intrinsic character of the fibers have been implemented in development of such sensing devices. Glass Optical Fibers (GOF) because of low attenuation are more suitable for the optical communication purposes while Plastic Optical Fibers are advantageous for the linking purpose and some sensing operations. Considering this point different (POF) optical fiber sensors have been developed by author to show potential applications of POFs in sensor... 

    Thermoelastic damping in strain gradient microplates according to a generalized theory of thermoelasticity

    , Article Journal of Thermal Stresses ; Volume 43, Issue 4 , 2020 , Pages 401-420 Borjalilou, V ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This paper deals with the small-scale effects on the thermoelastic damping (TED) in microplates. The coupled equations of motion and heat conduction are provided utilizing the strain gradient theory (SGT) and the dual-phase-lag (DPL) heat conduction model. Solving these equations and adopting the Galerkin method, the real and imaginary parts of frequency are extracted. The complex frequency approach is then employed to present a size-dependent expression for evaluating TED in thin plates. An analytical expression for TED incorporating small-scale effects is also derived on the basis of the energy dissipation approach. To survey the effect of different continuum theories on TED, the results... 

    Analytical solution for thermoelastic oscillations of nonlocal strain gradient nanobeams with dual-phase-lag heat conduction

    , Article Mechanics Based Design of Structures and Machines ; 2021 ; 15397734 (ISSN) Liu, D ; Geng, T ; Wang, H ; Esmaeili, S ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    In order to examine the impact of structural and thermal scale parameters on thermoelastic vibrations of Euler-Bernoulli nanobeams, this article intends to provide a size-dependent generalized thermoelasticity model with the help of nonlocal strain gradient theory (NSGT) in conjunction with dual-phase-lag (DPL) heat conduction model. To highlight the role of each scale parameter in size-dependent motion and heat conduction equations, normalized forms of these nonclassical coupled thermoelastic equations are extracted by introducing and exploiting some dimensionless parameters. By exploiting power series expansion as a general solution for arbitrary boundary conditions, system of partial... 

    On size-dependent generalized thermoelasticity of nanobeams

    , Article Waves in Random and Complex Media ; 2022 ; 17455030 (ISSN) Yu, J.-N ; She, C ; Xu, Y.-P ; Esmaeili, S ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this article, a size-dependent generalized thermoelasticity model is established to appraise the small-scale effect on thermoelastic vibrations of Euler-Bernoulli nanobeams. Small-scale effect on the structure and heat conduction is captured by exploiting nonlocal strain gradient theory (NSGT) and nonclassical heat conduction model of Guyer and Krumhansl (GK model). NSGT enables the model to account for both nonlocal and strain gradient effects on structure, and GK formulation empowers the model to incorporate both nonlocal and lagging effect into heat conduction equation. The normalized forms of size-dependent equations of motion and heat conduction are provided by introducing some... 

    Investigation of the small-scale effects on the three-dimensional flexural vibration characteristics of a basic model for micro-engines

    , Article Acta Mechanica ; Volume 226, Issue 9 , September , 2015 , Pages 3085-3096 ; 00015970 (ISSN) Hashemi, M ; Asghari, M ; Sharif University of Technology
    Springer-Verlag Wien  2015
    Abstract
    The coupled three-dimensional flexural vibrations of a micro-rotating shaft–disk system, as a basic model for micro-engines, are investigated in this paper by considering small-scale effects utilizing the modified couple stress theory. Governing equations of motion are derived by the use of Hamilton’s principle. Then, implementing the Galerkin approach, an infinite set of ordinary differential equations is obtained for the system. With truncated two-term equations, expressions for the first two natural frequencies are written, and for the two corresponding modes, the maximum rotational speed up to which the system will be stable is analytically determined. Parametric studies on the results... 

    Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model

    , Article Acta Mechanica ; Volume 229, Issue 9 , 2018 , Pages 3869-3884 ; 00015970 (ISSN) Borjalilou, V ; Asghari, M ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    Thermoelastic damping (TED) is one of the main energy dissipation mechanisms in structures with small scales. On the other hand, the classical continuum theory is not capable of describing the mechanical behavior of small-scale structures. In this paper, small-scale effects on the thermoelastic damping in microplates are studied. To this end, the coupled governing equations of motion and heat conduction are obtained based on the non-classical continuum theory of the modified couple stress and the dual-phase-lag heat conduction model. By solving these coupled equations, an explicit expression including small-scale effects for calculating TED in microplates is derived. The results are compared... 

    Analytical study of micro-rotating disks with angular acceleration on the basis of the strain gradient elasticity

    , Article Acta Mechanica ; Volume 230, Issue 9 , 2019 , Pages 3259-3278 ; 00015970 (ISSN) Bagheri, E ; Asghari, M ; Danesh, V ; Sharif University of Technology
    Springer-Verlag Wien  2019
    Abstract
    The small-scale effects on the mechanical responses of micro-rotating disks with angular acceleration are investigated based on the strain gradient theory, as one of the powerful non-classical continuum theories which have been developed to justify the empirical observations of mechanical behavior in small-scale structures and components. The differential equations governing motion of the micro-disk elements in radial and circumferential direction together with the corresponding boundary conditions are derived. Then, an analytical solution is presented for the components of the displacement field which can be used as a base for determination of the components of the stress field. In a... 

    Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches

    , Article Microsystem Technologies ; 2018 ; 09467076 (ISSN) Haghshenas Gorgani, H ; Mahdavi Adeli, M ; Hosseini, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    In this paper, pull-in behavior of cantilever micro/nano-beams made of functionally graded materials (FGM) with small-scale effects under electrostatic force is investigated. Consistent couple stress theory is employed to study the influence of small-scale on pull-in behavior. According to this theory, the couple tensor is skew-symmetric by adopting the skew-symmetric part of the rotation gradients. The material properties except Poisson’s ratio obey the power law distribution in the thickness direction. The approximate analytical solutions for the pull-in voltage and pull-in displacement of the microbeams are derived using the Rayleigh–Ritz method. Comparison between the results of the... 

    Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches

    , Article Microsystem Technologies ; Volume 25, Issue 8 , 2019 , Pages 3165-3173 ; 09467076 (ISSN) Haghshenas Gorgani, H ; Mahdavi Adeli, M ; Hosseini, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    In this paper, pull-in behavior of cantilever micro/nano-beams made of functionally graded materials (FGM) with small-scale effects under electrostatic force is investigated. Consistent couple stress theory is employed to study the influence of small-scale on pull-in behavior. According to this theory, the couple tensor is skew-symmetric by adopting the skew-symmetric part of the rotation gradients. The material properties except Poisson’s ratio obey the power law distribution in the thickness direction. The approximate analytical solutions for the pull-in voltage and pull-in displacement of the microbeams are derived using the Rayleigh–Ritz method. Comparison between the results of the... 

    Uncertainty analysis of wind-wave predictions in Lake Michigan

    , Article China Ocean Engineering ; Volume 30, Issue 5 , 2016 , Pages 811-820 ; 08905487 (ISSN) Nekouee, N ; Ataie Ashtiani, B ; Hamidi, S. A ; Sharif University of Technology
    Springer Verlag 
    Abstract
    With all the improvement in wave and hydrodynamics numerical models, the question rises in our mind that how the accuracy of the forcing functions and their input can affect the results. In this paper, a commonly used numerical third-generation wave model, SWAN is applied to predict waves in Lake Michigan. Wind data are analyzed to determine wind variation frequency over Lake Michigan. Wave predictions uncertainty due to wind local effects are compared during a period where wind has a fairly constant speed and direction over the northern and southern basins. The study shows that despite model calibration in Lake Michigan area, the model deficiency arises from ignoring wind effects in small...