Loading...
Search for: small-scale
0.012 seconds
Total 53 records

    Excursion Set Theory Application in Large Scale Structure Formation

    , Ph.D. Dissertation Sharif University of Technology Kameli, Hamed (Author) ; Baghram, Shant (Supervisor) ; Rahvar, Sohrab (Supervisor)
    Abstract
    The standard model of cosmology with Cold Dark Matter (CDM) and cosmological constant ΛCDM, Despite its achievement and success, confronts some important open questions and challenges such as Dark Matter (DM) nature, small scale structure challenge, $H_0$ tension and, etc. In this dissertation, we study the formation and growth of Large Scale Structure (LSS) as one of the most important cosmological observables. Then we propose some solutions to these questions and challenges. We use the Excursion Set Theory (EST) to study the LSS and calculate the LSS observable such as first up-crossing of trajectories from density contrast barrier, the number density of DM halos, conditional number... 

    Modeling and Analysis of D2D Data Offloading

    , M.Sc. Thesis Sharif University of Technology Karami, Farzan (Author) ; Ashtiani, Farid (Supervisor) ; Mirmohseni, Mahtab (Co-Advisor)
    Abstract
    The increase in mobile data traffic adversely affects the quality of service experienced by mobile users. Moreover, the cost incurred by developing infrastructure exceeds its profit. Therefore, there is a trend toward finding cost effective schemes to cope with increase in mobile data traffic. One of the recent elegant solutions is mobile data offloading based on D2D communications. In this thesis, we propose a new offloading scheme using D2D communications for delay-tolerant services. In this regard, we assume a common file is demanded by a subset of users in different time instances and we accumulate demands to serve them in a scheme where devices are divided into non-overlapping... 

    Design of a Hybrid Residential Compressed Air Energy Storage System Focusing on Its Economic Considerations

    , M.Sc. Thesis Sharif University of Technology Khedmati, Amir Reza (Author) ; Saeedi, Mohammad Hassan (Supervisor)
    Abstract
    In recent years, energy storage systems have received widespread attention from researchers to increase the reliability of the power grid. These systems have different types that compressed air system is of special importance due to its high stored energy and long life. In this system, the surplus of electricity generated from renewable energy sources or grid electricity at low power consumption is compressed and stored in a tank. When there is a need for power consumption or peak power consumption, compressed air will generate electricity by passing through the turbine and will help the network. Large-scale type of the system requires special geographical location for air storage; for this... 

    Design, Construction and Experimental Study of Effect of a Pressure Intensifier Device on a Small Scale Reverse Osmosis System

    , M.Sc. Thesis Sharif University of Technology Bolhassani, Mohammad (Author) ; Arghavani Hadi, Jamal (Supervisor)
    Abstract
    Nowadays, water and energy shortage is the main concern of many industries. Every saving that could be done is valuable. In the first step of this project, energy recovery devices that are used in reverse osmosis systems, are reviewed and advantages and disadvantages of each system are investigated. These apparatuses save energy by recovering high-pressure energy from leaving brine and reduce the energy consumption of the device. The main focus of this study is energy consumption of the device that is used for desalination of seawater in reverse osmosis systems and on this basis, different energy recovery devices are compared. According to the investigation, results showed that most of the... 

    Stability Analysis of Hybrid Nanotubes Based on the Nonlocal Continuum Theories

    , M.Sc. Thesis Sharif University of Technology Rafati Heravi, Jacob (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Strong van der Waals (vdW) potential fields of carbon nanotubes (CNTs) makes them capable to encapsulate some nanostructures inside their hollow space, which leads to the construction of new hybrid nanostructures under specific conditions. Carbon nano-peapods, carbon nanowires and the hybrid of DNA and CNT are the main categories of hybrid nanostructures of CNT. Characteristics of hybrid nanotubes are unique and different from those of CNT. In nanostructures, the lattice spacing between individual atoms is considerable with respect to the structural dimensions. Also, the range of internal characteristic length is relatively close to external ones. So that utilizing the classical continuum... 

    Analysis of Micro Rotating Disk with Angular Acceleration Based on the Non-Classical Continuum Mechanics

    , M.Sc. Thesis Sharif University of Technology Bagheri, Emadoddin (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Incapability of the classical continuum mechanics theory to justify the experimental observations of the mechanical response of the small-scale structures and parts motivated the researchers to pursue the introduction and utilization of the non-classical continuum theories for analysis and design of such structures and parts. In this paper, utilizing the modified couple stress theory and the strain gradient theory as well-known and powerful non-classical continuum theories, the mechanical response, including the displacement and stress fields, for micro-rotating disks with angular acceleration is investigated. The governing differential equations of motion and the corresponding boundary... 

    Investigation of Flow Field in a Small-Scale Cleanroom by Design and Implementation of Stereoscopic Particle Image Velocimetry

    , M.Sc. Thesis Sharif University of Technology Asadi, Masoud (Author) ; Saidi, Mohammad Hasan (Supervisor) ; Zabetian Toroghi, Mohammad (Co-Supervisor)
    Abstract
    The air distribution is the main factor of contaminant transportation in cleanrooms. The experimental method is the most reliable one for investigation of flow field, which the difficulties associated with it, has limited not only the examination of the flow field in cleanrooms, but also the improvement of their qualities. Most of the experimental researches in indoor air quality concern conventional rooms and do not take into account specific supply-exhaust diffuser configurations, which are used in cleanrooms. Using small-scale models can reduce the complexity and the cost of measurements. In this research, the 3D velocity field of a small-scale cleanroom is measured in three different... 

    Uncertainty analysis of wind-wave predictions in Lake Michigan

    , Article China Ocean Engineering ; Volume 30, Issue 5 , 2016 , Pages 811-820 ; 08905487 (ISSN) Nekouee, N ; Ataie Ashtiani, B ; Hamidi, S. A ; Sharif University of Technology
    Springer Verlag 
    Abstract
    With all the improvement in wave and hydrodynamics numerical models, the question rises in our mind that how the accuracy of the forcing functions and their input can affect the results. In this paper, a commonly used numerical third-generation wave model, SWAN is applied to predict waves in Lake Michigan. Wind data are analyzed to determine wind variation frequency over Lake Michigan. Wave predictions uncertainty due to wind local effects are compared during a period where wind has a fairly constant speed and direction over the northern and southern basins. The study shows that despite model calibration in Lake Michigan area, the model deficiency arises from ignoring wind effects in small... 

    Two phase gas-liquid bubbly flow modeling in vertical mini pipe

    , Article 2010 14th International Heat Transfer Conference, IHTC 14, 8 August 2010 through 13 August 2010 ; Volume 3 , 2010 , Pages 947-956 ; 9780791849385 (ISBN) Kebriaee, M. H ; Karabi, H ; Khorsandi, S ; Saidi, M. H ; Heat Transfer Division ; Sharif University of Technology
    Abstract
    Studies on two-phase flow in small scale pipes have become more important, because of the application of mini-scale devices in several engineering fields including, high heat-flux compact heat exchangers, and cooling systems of various types of equipment. In a mini pipe the behavior of two phase flow is not the same as flow in conventional pipes. The difference is caused by different effective forces; for e. g. inside a mini pipe capillary forces are more important in comparison with gravitational forces. This paper is devoted to numerical simulation of gas-liquid two phase flow in a vertical mini pipe. Prediction of bubble shape and the effects of gas and liquid velocities on flow... 

    Torsional vibration induced by gyroscopic effect in the modified couple stress based micro-rotors

    , Article European Journal of Mechanics, A/Solids ; Volume 81 , May–June , 2020 Jahangiri, M ; Asghari, M ; Bagheri, E ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, the small-scale effects in the torsional vibration of the micro-rotors with eccentric micro-disks are investigated based on the modified couple stress theory. The torsional deformation of the micro-shaft described by function φ(x,t) is considered to be independent of the flexural deformation described by functions v(x,t) and w(x,t). Using Hamilton's principle, the system of coupled nonlinear governing partial differential equations of motion and the associated boundary conditions are derived. The system of equations includes one corresponding to the torsional deformation and two others corresponding to the flexural deformation. By employing the Galerkin method, the system... 

    Torsional instability of carbon nano-peapods based on the nonlocal elastic shell theory

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 47 , 2013 , Pages 316-323 ; 13869477 (ISSN) Asghari, M ; Rafati, J ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    In this paper a shell formulation is proposed for analyzing the torsional instability of carbon nano-peapods (CNPs), i.e., the hybrid structures composed of C60 fullerenes encapsulated inside carbon nanotubes (CNTs), based on the nonlocal elasticity theory. The nonlocal elasticity theory, as a well-known non-classical continuum theory, is capable to capture small scale effects which appear due to the discontinuities in nano-structures. Based on the derived formulation, the critical torsional moments for a pristine (10,10) CNT and C60@ (10,10) CNP are investigated as case studies. The results for the (10,10) CNT are compared with those of the available molecular dynamics simulations in the... 

    The second strain gradient functionally graded beam formulation

    , Article Composite Structures ; Volume 188 , 15 March , 2018 , Pages 15-24 ; 02638223 (ISSN) Momeni, S. A ; Asghari, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    A size-dependent formulation for the Euler-Bernoulli nano- and micro-beams made of functionally graded materials (FGMs) is presented. The formulation is developed on the basis of the second strain gradient theory (SSGT). This theory is a powerful non-classical continuum theory capable of capturing the small-scale effects in the mechanical behavior of small-scale structures. To drive the governing equations of motion along with the general form of boundary conditions, the Hamilton principle is utilized. Due to the inhomogeneity through the thickness of functionally graded beams, the two equations which govern the axial and flexural deformations are coupled. In two case studies with different... 

    Thermoelastic damping in strain gradient microplates according to a generalized theory of thermoelasticity

    , Article Journal of Thermal Stresses ; Volume 43, Issue 4 , 2020 , Pages 401-420 Borjalilou, V ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This paper deals with the small-scale effects on the thermoelastic damping (TED) in microplates. The coupled equations of motion and heat conduction are provided utilizing the strain gradient theory (SGT) and the dual-phase-lag (DPL) heat conduction model. Solving these equations and adopting the Galerkin method, the real and imaginary parts of frequency are extracted. The complex frequency approach is then employed to present a size-dependent expression for evaluating TED in thin plates. An analytical expression for TED incorporating small-scale effects is also derived on the basis of the energy dissipation approach. To survey the effect of different continuum theories on TED, the results... 

    The couple stress-based nonlinear coupled three-dimensional vibration analysis of microspinning Rayleigh beams

    , Article Nonlinear Dynamics ; Volume 87, Issue 2 , 2017 , Pages 1315-1334 ; 0924090X (ISSN) Asghari, M ; Hashemi, M ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    The nonlinear coupled three-dimensional vibrations of microspinning Rayleigh beams are analytically studied utilizing the modified couple stress theory to take into account the small-scale effects. The considered nonlinearity is of geometrical type due to the mid-plane stretching. The rotary inertia and gyroscopic effects are both included in the formulation. Governing equations of motion are derived with the aid of the Hamilton Principle and then transformed into complex form. Then, the Galerkin and multiple scales methods are utilized to solve the nonlinear partial differential equation. Approximate analytical expressions for nonlinear natural frequencies of the spinning beams in forward... 

    Study of the effects of miniaturization on static and dynamic form errors in desktop milling machines

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 4 , 2010 , Pages 587-595 ; 9780791843772 (ISBN) Vazirian, M ; Movahhedy, M. R ; Akbari, J ; Sharif University of Technology
    Abstract
    Desktop and miniaturized machine tools are a new trend in small scale and customized manufacturing. The performance of these machines in terms of their energy consumption, machining fluid consumption and their precision have been investigated in the literature, but the effect of miniaturization on static deflection, stability against chatter and the resulting surface error has not been studied. In this paper, the performance of the desktop milling machine tool in terms of their static and dynamic form errors is studied. The performance of a miniature milling machine used for end milling of a typical workpiece is compared with a similar machine of conventional size through dimensional... 

    Small scale effects on the stability of carbon nano-peapods under radial pressure

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 43, Issue 5 , March , 2011 , Pages 1050-1055 ; 13869477 (ISSN) Asghari, M ; Naghdabadi, R ; Rafati Heravi, J ; Sharif University of Technology
    2011
    Abstract
    In this paper, a nonlocal elasticity formulation is presented for analyzing the instability of nano-peapods by modeling the nanotube as a shell. Using the nonlocal elasticity theory, the small scale characteristics of Carbon Nano-Peapods (CNPs) are taken into account. While the classical elastic shell model overestimates the critical pressure for the onset of structural instability of carbon nanotubes, the obtained results show that the nonlocal elastic shell model for nano-peapods can potentially provide better predictions. According to the results, it is concluded that the presence of C 60 inside (10,10) Carbon Nanotubes (CNTs) significantly increases the stability resistance of the single... 

    Small-Scale building load forecast based on hybrid forecast engine

    , Article Neural Processing Letters ; Volume 48, Issue 1 , 2018 , Pages 329-351 ; 13704621 (ISSN) Mohammadi, M ; Talebpour, F ; Safaee, E ; Ghadimi, N ; Abedinia, O ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Electricity load forecasting plays an important role for optimal power system operation. Accordingly, short term load forecast (STLF) is also becoming an important task by researchers to tackle the mentioned problem. As a consequence of the highly non-smooth and volatile trend of the load time series specially in building levels, its STLF is even a more complex procedure than that of a power system. For this purpose, in this paper we proposed a new prediction model based on a new feature selection algorithm and hybrid forecast engine of enhanced version of empirical mode decomposition named sliding window EMD bundled with an intelligent algorithm. The proposed forecast engine is combined... 

    Small-scale building load forecast based on hybrid forecast engine

    , Article Neural Processing Letters ; 2017 , Pages 1-23 ; 13704621 (ISSN) Mohammadi, M ; Talebpour, F ; Safaee, E ; Ghadimi, N ; Abedinia, O ; Sharif University of Technology
    Abstract
    Electricity load forecasting plays an important role for optimal power system operation. Accordingly, short term load forecast (STLF) is also becoming an important task by researchers to tackle the mentioned problem. As a consequence of the highly non-smooth and volatile trend of the load time series specially in building levels, its STLF is even a more complex procedure than that of a power system. For this purpose, in this paper we proposed a new prediction model based on a new feature selection algorithm and hybrid forecast engine of enhanced version of empirical mode decomposition named sliding window EMD bundled with an intelligent algorithm. The proposed forecast engine is combined... 

    Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model

    , Article Acta Mechanica ; Volume 229, Issue 9 , 2018 , Pages 3869-3884 ; 00015970 (ISSN) Borjalilou, V ; Asghari, M ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    Thermoelastic damping (TED) is one of the main energy dissipation mechanisms in structures with small scales. On the other hand, the classical continuum theory is not capable of describing the mechanical behavior of small-scale structures. In this paper, small-scale effects on the thermoelastic damping in microplates are studied. To this end, the coupled governing equations of motion and heat conduction are obtained based on the non-classical continuum theory of the modified couple stress and the dual-phase-lag heat conduction model. By solving these coupled equations, an explicit expression including small-scale effects for calculating TED in microplates is derived. The results are compared... 

    Size-dependent vibrational behavior of a Jeffcott model for micro-rotor systems

    , Article Journal of Mechanical Science and Technology ; Volume 30, Issue 1 , 2016 , Pages 35-41 ; 1738494X (ISSN) Hashemi, M ; Asghari, M ; Sharif University of Technology
    Korean Society of Mechanical Engineers 
    Abstract
    In this study, several analytical expressions are obtained for the vibrational characteristics of a Jeffcott model for micro-rotor systems based on the strain gradient theory to investigate the small-scale effects on the model. The Jeffcott model consists of a massless microrotating shaft and a disk as a rotor with eccentricity. The disk is mounted on the middle of the shaft. Two second-order differential equations associated with the oscillating motion of the rotor in the plane perpendicular to the longitudinal axis are presented and transformed into a complex form. The stiffness of the system is determined by obtaining the deflection of a strain-gradient-based nonrotating microbeam...