Loading...
Search for: solar-power
0.013 seconds
Total 170 records

    Modeling and techno-economic study of a solar reverse osmosis desalination plant

    , Article International Journal of Environmental Science and Technology ; Volume 19, Issue 9 , 2022 , Pages 8727-8742 ; 17351472 (ISSN) Ebrahimpour, B ; Hajialigol, P ; Boroushaki, M ; Shafii, M. B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this research, the design of a solar reverse osmosis desalination plant was investigated by integrating various components using TRNSYS and ROSA software. To this goal, a two-stage reverse osmosis system with 50% recovery in the city of Chabahar was modeled. The calculations were performed in three different case studies, i.e., a photovoltaic power plant, a solar collector power plant with Organic Rankine Cycles, and a photovoltaic thermal power plant with Organic Rankine Cycles, with the reverse osmosis desalination plant being a novel investigation. Water production and electrical energy generation of each case study were evaluated both on a daily and yearly bases. The simulation... 

    Experimental evaluation of a solar-driven adsorption desalination system using solid adsorbent of silica gel and hydrogel

    , Article Environmental Science and Pollution Research ; Volume 29, Issue 47 , 2022 , Pages 71217-71231 ; 09441344 (ISSN) Zarei Saleh Abad, M ; Behshad Shafii, M ; Ebrahimpour, B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Nowadays, the world is facing a shortage of fresh water. Utilizing adsorbent materials to adsorb air moisture is a suitable method for producing freshwater, especially combining the adsorption desalination system with solar energy devices such as solar collectors. The low temperature of solar collectors has caused some water to remain in the adsorbents in the desorption process and has reduced the possibility of using these systems. In this research, for the first time, an evacuated tube collector (ETC) is used as an adsorbent bed so that the temperature of the desorption process reaches higher values and as a result, more fresh water is expected to produced. In this study, two adsorption... 

    Experimental evaluation of the effect of boulders and fines in biodegradable organic materials on the improvement of solar stills

    , Article Solar Energy ; Volume 247 , 2022 , Pages 453-467 ; 0038092X (ISSN) Ebrahimpour, B ; Behshad Shafii, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this research, for the first time, the effect of primary particles (boulders) and secondary particles (fines) in organic mixtures of coffee, black walnut hull, madder, and tea (which are cheap, abundant, and biodegradable) on the improvement of solar stills' daily efficiency is evaluated as an alternative to metal-based nanofluids. A laboratory still simulator is utilised under laboratory conditions to measure the organic mixture's behaviour accurately. Furthermore, the effect of the concentration of organic mixtures and the particle size of organic materials are investigated, as well as the effect of boulders and fines, independently. In addition, two identical solar still systems are... 

    Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach

    , Article Renewable Energy ; Volume 186 , 2022 , Pages 889-903 ; 09601481 (ISSN) Jahangiri, M ; Rezaei, M ; Mostafaeipour, A ; Goojani, A.R ; Saghaei, H ; Hosseini Dehshiri, S. J ; Hosseini Dehshiri, S. S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Renewable hydrogen production plays a key role in transitioning to a hydrogen economy. For this, developing countries are encouraged to keep up with industrialized nations. As such, this study seeks to evaluate the potential of all capital cities of Iran in terms of solar-based hydrogen production and prioritize the nominated alternatives. This step is highly valued because finding the most suitable place for this purpose can lead to substantial outcomes and consequently avoid failure. Therefore, here a 20-kW solar power plant is simulated by PVsyst 6.7 software and meteorological data of 31 capital cities is extracted using Meteonorm 7.1 software. Considering all losses associated with... 

    A robust kalman filter-based approach for SoC estimation of lithium-ION batteries in smart homes

    , Article Energies ; Volume 15, Issue 10 , 2022 ; 19961073 (ISSN) Rezaei, O ; Habibifar, R ; Wang, Z ; Sharif University of Technology
    MDPI  2022
    Abstract
    Battery energy systems are playing significant roles in smart homes, e.g., absorbing the uncertainty of solar energy from root-top photovoltaic, supplying energy during a power outage, and responding to dynamic electricity prices. For the safe and economic operation of batteries, an optimal battery-management system (BMS) is required. One of the most important features of a BMS is state-of-charge (SoC) estimation. This article presents a robust central-difference Kalman filter (CDKF) method for the SoC estimation of on-site lithium-ion batteries in smart homes. The state-space equations of the battery are derived based on the equivalent circuit model. The battery model includes two RC... 

    Optimal design of solar concentrator in multi-energy hybrid systems based on minimum exergy destruction

    , Article Renewable Energy ; Volume 190 , 2022 , Pages 78-93 ; 09601481 (ISSN) Tavakol Moghaddam, Y ; Saboohi, Y ; Fathi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The paper presents a systematic approach to designing an imaging dish for a concentrator photovoltaic (CPV) system to minimize exergy destruction. The designed CPV system uniformly distributes light rays on the receiver (TPV/multi-junction PV) to enhance the conversion technology efficiency and lifetime. To this end, a parametric dish is designed using imaging optics and the numerical solution of a differential equation. Afterward, a Monte Carlo simulation is used to estimate the output energy and exergy of the CPV system with the parametric dish. Finally, an optimization algorithm finds the optimal design parameters to minimize the system's exergy destruction. The optimal design leads to a... 

    Synergistic effect of reduced graphene oxide and carbon black as hybrid light absorber for efficient and antifouling texture-based solar steam generator

    , Article Solar Energy ; Volume 238 , 2022 , Pages 226-237 ; 0038092X (ISSN) Simayee, M ; Iraji zad, A ; Esfandiar, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Efficient utilization of solar energy as the cleanest and most plentiful natural resource for drinking water is a water is as sustianble and environmental friendly approach to obviate long-standing water scarcity. Carbon-based photothermal absorbers due to broadband light absorption are very interesting in interfacial solar steam generation systems. Herein, we investigate the convenient application of reduced graphene oxide (rGO) nanosheets with carbon black (CB) nanoparticles on the cotton fabric as a flexible texture-based photothermal absorber. Polyurethane (PU) as a self-floating insulator foam was selected to manage the energy loss and preserve light converted to heat on the fabric... 

    Application of hybrid nanofluids in a novel combined photovoltaic/thermal and solar collector system

    , Article Solar Energy ; Volume 239 , 2022 , Pages 102-116 ; 0038092X (ISSN) Kazemian, A ; Salari, A ; Ma, T ; Lu, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Because of the low outflow temperature of the conventional photovoltaic thermal systems and lack of electrical production of the solar thermal collectors, a novel combined system is proposed to solve the two mentioned drawbacks. This novel system is achieved by connecting a photovoltaic thermal unit to a solar thermal collector in series. To increase the overall performance of this novel combined system, different hybrid nanofluids include (1) multiwall carbon nanotube-aluminum oxide (2) multiwall carbon nanotube-silicon carbide (3) graphene-aluminum oxide, and (4) graphene-silicon carbide are compared. The investigation is performed based on the three-dimensional simulation, and the... 

    A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern climate of Iran

    , Article Energy ; Volume 261 , 2022 ; 03605442 (ISSN) Hosseini Dehshiri, S. S ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In recent years, declining fossil fuel reserves and increasing environmental concerns led to higher utilization of renewable energy source (RES). One of the RES is Solar energy which is abundantly found in different areas of the globe, particularly in Iran. The aim of this research is to select a suitable site for constructing a solar power plant to generate electricity-hydrogen in southern Iran, Kerman province. For this purpose, a new hybrid Multi criteria decision making method is used. The Stepwise Weight Assessment Ratio Analysis (SWARA)method is used to weigh the criteria and the Measurement of alternatives and ranking according to Compromise solution (MARCOS)method is used to rank... 

    Analysis of all-electric ship motions impact on PV system output power in waves

    , Article 2022 IEEE Transportation Electrification Conference and Expo, ITEC 2022, 15 June 2022 through 17 June 2022 ; 2022 , Pages 450-455 ; 9781665405607 (ISBN) Nasiri, S ; Parniani, M ; Blaabjerg, F ; Peyghami, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Waves encountering can cause significant ship motions and affect the photovoltaic power generation capacity in All-Electric Ships (AES) during extreme conditions. In this paper, a comprehensive strategy is proposed to examine the impact of modern vessels' movements on the PV system output and the ship power quality during various operating scenarios. The proposed theoretical model-based technique determines ship angles in a wave collision and assesses sun-related angles concerning the vessel motions. Based on the panel angles, the solar irradiance and the PV system power variations can be derived. The developed method can simultaneously evaluate the effect of ship motions on the photovoltaic... 

    4-tert-butyl pyridine additive for moisture-resistant wide bandgap perovskite solar cells

    , Article Optical Materials ; Volume 123 , 2022 ; 09253467 (ISSN) Rafiei Rad, R ; Azizollah Ganji, B ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Perovskite solar cells fabrication process need inert or low humidity atmospheres. While highly efficient perovskite solar cells to overcome the photovoltaic marketing should be achieved stability at any environmental conditions. At high humidity, water molecules react with the perovskite layer and increase the degradation rate, leading to a drastic decrease in device performance and perovskite crystallinity. In this work, the effect of environmental humidity on photophysical parameters of wide bandgap, (WBG) perovskite layer and solar cells stability is systematically investigated and tBP is proposed as an additive in perovskite precursor to increase the moisture resistance and improve the... 

    Pre-deposited alkali (Li, Na, K) chlorides layer for effective doping of CuInSSe thin films as absorber layer in solar cells

    , Article Solar Energy ; Volume 231 , 2022 , Pages 694-704 ; 0038092X (ISSN) Hashemi, M ; Bagher Ghorashi, S. M ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    We introduce an effective method for copper indium sulfide selenide (CISSe) doping with different alkali metals (Li, Na and K) based on a pre-deposited alkali chloride layer. A simple and fast spray method is used for pre-deposition of alkali chloride layer (LiCl, NaCl, KCl) on substrate surface before spray pyrolysis deposition of copper indium disulfide CuInS2 (CIS) films followed by selenization. The different properties of alkali-doped CISSe films by the alkali chloride pre-deposition (ACPD) method were compared to the post-deposition treatment (PDT) method. Based on FESEM images, a highly compact film with large grains can be obtained for CISSe films doped with K(∼0.72 μm) and Na (∼0.56... 

    Infrastructure aware heterogeneous-workloads scheduling for data center energy cost minimization

    , Article IEEE Transactions on Cloud Computing ; Volume 10, Issue 2 , 2022 , Pages 972-983 ; 21687161 (ISSN) Haghshenas, K ; Taheri, S ; Goudarzi, M ; Mohammadi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    A huge amount of energy consumption, the cost of this usage and environmental effects have become serious issues for commercial cloud providers. Solar energy is a promising clean energy source, to provide some portion of the Internet data center's (IDC's) energy usage which can reduce environmental effects and total energy costs. Moreover, due to the high energy consumption of the cooling system, considering cooling power in job scheduling can provide efficient solutions to reduce total energy consumption. In this article, we investigate the problem of minimizing the energy cost of an IDC and propose an algorithm which schedules heterogeneous IDC workloads, by considering available renewable... 

    Techno-economic analysis of a modified concentrating photovoltaic/organic Rankine cycle system

    , Article International Journal of Ambient Energy ; Volume 43, Issue 1 , 2022 , Pages 2026-2038 ; 01430750 (ISSN) Moltames, R ; Roshandel, R ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The combination of concentrating photovoltaic (CPV) and organic Rankine cycle (ORC) systems not only leads to a reduction of photovoltaic (PV) operating temperature, but also leads to an additional electric power production. Increase in the temperature of the PV decreases its operating efficiency, while increases the ORC efficiency. Therefore, there is an optimum temperature in which the total electricity produced by the combined system will be maximum. In this study, a modified CPV/ORC system is simulated and the optimum operating temperature of the PV panel is determined for different PV efficiencies. The most striking result is that increase in the PV nominal efficiency will result in the... 

    Solar-hydrogen renewable supply system optimisation based on demand side management

    , Article International Journal of Ambient Energy ; Volume 43, Issue 1 , 2022 , Pages 754-763 ; 01430750 (ISSN) Haddadi, M ; Jafarinejad, T ; Badpar, F ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Stand-alone hybrid power systems are an alternative to main electricity grids, where the grid extension is costly or the trifling local consumption would not justify its expansion. However, lack of consistency and uniformity in renewable energy sources, and the restrictions of energy storage systems make system sizing a challenging task. Optimum size of a stand-alone system depends on several factors including energy demand function. In this paper, different types of demand functions are addressed for optimising a solar-hydrogen supply system. Different parameters are defined to investigate the impact of household population on the power generation cost, and also to determine the optimum... 

    Hydrogen production performance of a photovoltaic thermal system coupled with a proton exchange membrane electrolysis cell

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 7 , 2022 , Pages 4472-4488 ; 03603199 (ISSN) Salari, A ; Hakkaki Fard, A ; Jalalidil, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    As one of the cleanest energies, hydrogen has attracted much attention over the past decade. Hydrogen can be produced using water electrolysis in a Proton Exchange Membrane Electrolysis Cell (PEMEC). In the present study, the performance of the PEMEC, powered by the Photovoltaic-Thermal (PVT) system, is scrutinized. It is considered that the PVT system provides the required electrical power of the PEMEC and preheats the feedwater. A comprehensive numerical model of the coupled PVT-PEMEC system is developed. The model is used to investigate the effect of various operating parameters, including solar radiation intensity, inlet feedwater temperature, and feedwater mass flow rate, on the... 

    A thorough economic evaluation by implementing solar/wind energies for hydrogen production: a case study

    , Article Sustainability (Switzerland) ; Volume 14, Issue 3 , 2022 ; 20711050 (ISSN) Ahmadi, M. H ; Dehshiri, S. S. H ; Dehshiri, S. J. H ; Mostafaeipour, A ; Almutairi, K ; Ao, H. X ; Rezaei, M ; Techato, K ; Sharif University of Technology
    MDPI  2022
    Abstract
    A technical-economic assessment was carried out in this study to determine the possibilities for wind and solar power generation in Afghanistan’s Helmand province. The results showed that most of the province has a solar irradiance of over 400 W/m2, and also showed that wind and solar power generated in the province can be up to twice as cheap as the official price of renewable power in Afghanistan. The most suitable site for solar and hydrogen production was found to be Laškar Gāh, where solar and hydrogen can be produced at a cost of 0.066 $/kWh and 2.1496 $/kg-H2, respectively. In terms of wind power production and hydrogen production from wind, the most suitable site was Sangīn, where... 

    A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan

    , Article Energy ; Volume 240 , 2022 ; 03605442 (ISSN) Hosseini Dehshiri, S.S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The use of hybrid renewable energy has increased in recent years due to the growing environmental concerns caused by the consumption of fossil fuels. The purpose of this study was the economic-environmental feasibility of using hybrid energy systems in one of the most polluted and populated provinces in Iran, Isfahan province. Various components of the hybrid energy system such as wind turbine (WT), photovoltaic panel (PV), diesel generator (DG), converter (CV) along with two scenarios of energy storage including battery (BT) and hydrogen storage have been considered in modeling the energy system. Six scenarios were considered based on the combination of different components for supplying... 

    Chance-constrained programming for optimal scheduling of combined cooling, heating, and power-based microgrid coupled with flexible technologies

    , Article Sustainable Cities and Society ; Volume 77 , 2022 ; 22106707 (ISSN) Mianaei, P.K ; Aliahmadi, M ; Faghri, S ; Ensaf, M ; Ghasemi, A ; Abdoos, A. A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Microgrids (MGs) have a special role in developing several consumers' energy infrastructure and supply in more economical, safer, and sustainable ways. The interaction and mutual relationship between each energy carrier on the reliable performance of other carriers and the high growth of tri-generation technologies in the MG face the optimal performance of such networks with many challenges. Combined cooling, heating, and power (CCHP)-based MGs are a new generation of MGs that simultaneously provide electrical, thermal, and cooling loads. However, the interaction between these carriers is very influential in CCHP-based MG's operation, which is rarely analyzed. Hence, this paper focuses on... 

    A conceptual new model for use of solar water heaters in hot and dry regions

    , Article Sustainable Energy Technologies and Assessments ; Volume 49 , 2022 ; 22131388 (ISSN) Mostafaeipour, A ; Zarezade, M ; Khalifeh Soltani, S. R ; Hosseini Dehshiri, S. J ; Hosseini Dehshiri, S. S ; Ao Xuan, H ; Arockia Dhanraj, J ; Techato, K ; Chowdhury, S ; Issakhov, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Solar heater has been known as an application of the solar thermal energy that is commonly employed for water heating. Purpose of this research is to introduce a conceptual model for employing solar water heaters (SWHs) in Yazd, Iran. Moreover, structural equation modeling (SEM) is used for assessing effect(s) of the available parameters on the suggested model. Political-cultural-social issues, economic issues, financial support, geographic location, infrastructure, and interactions were assessed as the independent variables of the study. AMOS was used to implement the processes and design the research questionnaire. According to SEM, the dependent variable “interaction” via “economic...