Loading...
Search for: solar-power
0.011 seconds
Total 170 records

    Feasibility Study and Conceptual Design of Solar Energy Source for Surface Train System

    , M.Sc. Thesis Sharif University of Technology Maleki, Sina (Author) ; Durali, Mohammad (Supervisor)
    Abstract
    Advancements in solar powered systems bring about the possibility for today’s transportation systems to be operated and driven by such a clean and renewable source of energy. The challenging point of this combination is to draw high power levels from such a low power density source of energy. As a result, employing an efficient power storage and management system becomes inventible. The subjects of this research are to design a grid connected system and evaluate its performance and feasibility in a real application (Tehran- Mehrshahr surface train – Tehran 5th Metro Line). The task includes sixteen pairs of DC transmission lines which are powered by CIGS solar module technology and four... 

    Modeling and Optimal Design of a Solar Chimney Power Plant

    , M.Sc. Thesis Sharif University of Technology Gharagozlou, Ali (Author) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    The power generation system of this type of power plants operates on the air flowing through the power plant’s chimney and colliding with the turbine blades within the chimney. When the solar collector warms the nearby air and thus expands the air by absorbing the sunlight, a difference is created in the density. Then, this difference in the density creates the phenomenon of buoyancy, making the air pass to the top of the chimney through the collector.This study simulated and optimized a solar chimney power plant. The simulation and optimization were performed based on the information of Manzanares Solar Chimney Power Plant in Spain (located in 150 km from the south of Madrid). It was... 

    Theoretical and Experimental Investigation of Preparation of Distillate Water by Combination of CSP and MED Methods

    , M.Sc. Thesis Sharif University of Technology Najafi Sani, Mohammad Ali (Author) ; Molaee Dehkordi, Asghar (Supervisor)
    Abstract
    With the depletion of fossil resources, price of these energy careers increases. Therefore, researchers investigate for other alternative choices. One of the most interesting choice is the renewable energies. These sources of energies are attractive due to either they are permanent resources or they are environmentally friendly. The most important renewable energy resource is solar energy that in fact is the source of other renewable energies. The most important and economic method of solar energy absorption is the thermal method. Common technology in thermal method is the Parabolic-Trough. But, recently a new technology have been developed called Compact Linear Fresnel Reflector (CLFR) that... 

    Equipment Hardening Strategies to Improve Electric Distribution System Resilience Against Wildfire

    , M.Sc. Thesis Sharif University of Technology Talebi, Amir Hossein (Author) ; Vakilian, Mehdi (Supervisor)
    Abstract
    The severe wildfires in California, Australia, Canada, and Iran have interrupted the power system operation, caused multiple blackouts, took many lives, and caused damages to power grid infrastructure to the extent of millions and billions of dollars. Most of the recent wildfires occur in the distribution system. Therefore, enhancing power system distribution resilience against wildfire is crucial.To this end, two groups of measures are proposed: the hardening of the power network and the operational measures. The past published papers mainly studied the resilience enhancement strategies against wildfire from an operational perspective. There is a considerable gap between the past works... 

    Theoretical and Numerical Simulation of a Solar Collector for Direct Steam Generation

    , M.Sc. Thesis Sharif University of Technology Mehrabi, Pouria (Author) ; Morad, Mohammad Reza (Supervisor)
    Abstract
    Direct steam generation (DSG) process using linear FRESNEL collectors has been developed widely in recent years and is one of the most promising solar technologies for thermal power generation, Industrial processes and domestic usage. In this process water as heat transfer fluid (HTF) is heated through a solar field. Continuous breakthroughs are being achieved on improvement of these collectors. A multi-phase CFD model is developed to calculate the wall temperature of linear Fresnel absorber tubes and fluid properties including temperature, velocity, and pressure. In order to design the collector field and identify the critical condition such as overheating of the absorber tubes, modeling of... 

    Technical and Economical Potential for Application of Solar Energy in Enhanced Oil Recovery

    , M.Sc. Thesis Sharif University of Technology Najafi, Homayoun (Author) ; Ayatollahi, Shahabodin (Supervisor) ; Soltanieh, Mohammad (Supervisor)
    Abstract
    In this thesis, the application of solar energy in the steam injection as a thermal enhanced oil recovery (TEOR) is evaluated. The motivations of this project are using a renewable energy, suitable solar potential of Iran, successful experience in the world, undeveloped heavy oilfield reservoirs in Iran. This application is investigated by three aspects which are:Reservoir Engineering aspect: the heavy oilfield are determined and then screening for selection good candidate of steam injection are done. One of the reservoirs is analyzed by simulation and optimization the steam injection to determine how much it’s production will be improved by using steam injection (contionous and cyclic)... 

    Reliability evaluation of a composite power system containing wind and solar generation

    , Article Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference, PEOCO 2013 ; 2013 , p. 483-488 ; ISBN: 9781470000000 Ghaedi, A ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Moeini-Aghtaie, M ; Othman, M ; Sharif University of Technology
    Abstract
    Variability and uncertainty of wind and photovoltaic (PV) generations greatly influence technical and financial aspects of power systems. This paper examines the potential impacts of large-scale wind and PV farms on reliability level of composite generation and transmission systems. At first, reliability models of renewable-based units are developed. In these models, both component failure rates and uncertainty nature of renewable resources are taken into account. Using the proposed technique, the multi-state analytical models of a wind farm placed in Manjil and a PV farm placed in Jask both in Iran are extracted. Then, reliability studies of high renewable-energies penetrated power system... 

    A thorough investigation of the effects of water depth on the performance of active solar stills

    , Article Desalination ; Vol. 347 , 2014 , Pages 77-85 ; ISSN: 00119164 Taghvaei, H ; Taghvaei, H ; Jafarpur, K ; Karimi Estahbanati, M. R ; Feilizadeh, M ; Feilizadeh, M ; Seddigh Ardekani, A ; Sharif University of Technology
    Abstract
    One of the most important operating parameters which affects the performance and efficiency of active solar stills is brine depth. In all of the previous experimental or theoretical studies, effects of water depth were investigated during only the first 24-hour period (or even shorter periods) of the operation of active solar stills. In other words, only the first day was taken into account. However, the production of an active solar still depends on several parameters such as brine temperature at sunrise (initial temperature), which are all affected by the depth variation after the first day of operation. However, the present research experimentally investigates the long-term effects of... 

    Modeling and technical-economic optimization of electricity supply network by three photovoltaic systems

    , Article Journal of Solar Energy Engineering, Transactions of the ASME ; Vol. 136, issue. 2 , 2014 ; ISSN: 0199-6231 Safarian, S ; Khodaparast, P ; Kateb, M ; Sharif University of Technology
    Abstract
    To attain an ongoing electricity economy, developing novel widespread electricity supply systems based on diverse energy resources are critically important. Several photovoltaic (PV) technologies exist, which cause various pathways to produce electricity from solar energy. This paper evaluates the competition between three influential solar technologies based on photovoltaic technique to find the optimal pathways for satisfying the electricity demand: (1) multicrystalline silicon; (2) copper, indium, gallium, and selenium (CIGS); and (3) multijunction. Besides the technical factors, there are other effective parameters such as cost, operability, feasibility, and capacity that should be... 

    Design and modeling of an integrated CHP system with solar hydrogen/methane fueled pem fuel cell for residential applications

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 6B , November , 2014 ; ISBN: 9780791849521 Amirian, H ; Sayedin, F ; Maroufmashat, A ; Sharif University of Technology
    Abstract
    This paper describes the designing and evaluation of an alternative energy system which consists of PEMFC, PV, PEM electrolyser, methane reformer and hydrogen tank. In order to find out the minimum capacity of the components, a system sizing model is developed in MATLAB based on meteorological and electrical demand data. Three scenarios are considered based on different combinations of solar energy and fossil fuel energy as energy resources. The heating energy produced by the fuel cell is recovered for supplying domestic hot water while the system would supply electrical energy. Results show that system sizing strongly depends on scenarios and unit cost of electricity decreases through the... 

    Incorporating large photovoltaic farms in power generation system adequacy assessment

    , Article Scientia Iranica ; Vol. 21, issue. 3 , 2014 , p. 924-934 ; 10263098 Ghaedi, A ; Abbaspour, A ; Fotuhi-Friuzabad, M ; Parvania, M ; Sharif University of Technology
    Abstract
    Recent advancements in photovoltaic (PV) system technologies have decreased their investment cost and enabled the construction of large PV farms for bulk power generations. The output power of PV farms is affected by both failure of composed components and solar radiation variability. These two factors cause the output power of PV farms be random and different from that of conventional units. Therefore, suitable models and methods should be developed to assess different aspects of PV farms integration into power systems, particularly from the system reliability viewpoint. In this context a reliability model has been developed for PV farms with considering both the uncertainties associated... 

    Reliability evaluation of a composite power system containing wind and solar generation

    , Article Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference, PEOCO 2013 2013, Article , Pages 483-488 ; number 6564597 , 2013 , Pages 483-488 ; 9781467350730 (ISBN) Ghaedi, A ; Abbaspour, A ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Othman, M ; Sharif University of Technology
    2013
    Abstract
    Variability and uncertainty of wind and photovoltaic (PV) generations greatly influence technical and financial aspects of power systems. This paper examines the potential impacts of large-scale wind and PV farms on reliability level of composite generation and transmission systems. At first, reliability models of renewable-based units are developed. In these models, both component failure rates and uncertainty nature of renewable resources are taken into account. Using the proposed technique, the multi-state analytical models of a wind farm placed in Manjil and a PV farm placed in Jask both in Iran are extracted. Then, reliability studies of high renewable-energies penetrated power system... 

    A novel integrated solar desalination system with a pulsating heat pipe

    , Article Desalination ; Volume 311 , 2013 , Pages 206-210 ; 00119164 (ISSN) Kargar Sharif Abad, H ; Ghiasi, M ; Jahangiri Mamouri, S ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    The application of the solar energy in thermal desalination devices is one of the most beneficial applications of the renewable energies. In this study, a novel solar desalination system is introduced, which is benefited from the undeniable advantages of pulsating heat pipe (PHP) as a fast responding, flexible and high performance thermal conducting device. Results show a remarkable increase in the rate of desalinated water production and the maximum production reaches up to 875mL/(m2.h). However, the optimum water depth in basin and the filling ratio of the PHP are measured 1cm and 40%, respectively  

    Cooperative hybrid ARQ in solar powered wireless sensor networks

    , Article Microelectronics Reliability ; Volume 52, Issue 12 , 2012 , Pages 3043-3052 ; 00262714 (ISSN) Jalali, F ; Khodadoustan, S ; Ejlali, A ; Sharif University of Technology
    2012
    Abstract
    Energy harvesters are used in today's Wireless Sensor Networks (WSNs) to harvest energy from the environment. Although an energy harvester can provide a supply source with a much greater lifetime than a battery, the amount of available energy for an energy harvesting system is a random variable. Furthermore, the proper management of energy harvesters has a considerable impact on reliability. It has been observed that cooperative error control mechanisms like Cooperative Automatic Repeat Request (C-ARQ) and Cooperative Hybrid ARQ (C-HARQ) can be used for improving the energy management and reliability in Energy Harvesting WSNs (EH-WSNs). Recently, the impact of C-ARC mechanism has been... 

    Compromising wind and solar energies from the power system adequacy viewpoint

    , Article IEEE Transactions on Power Systems ; Volume 27, Issue 4 , 2012 , Pages 2368-2376 ; 08858950 (ISSN) Safdarian, A ; Fotuhi Firuzabad, M ; Aminifar, F ; Sharif University of Technology
    IEEE  2012
    Abstract
    Miscellaneous sorts of renewable energies, despite of their positive impacts on the power system operation cost and environmental concerns, could jeopardize the system reliability due to introducing significant degrees of intermittency and uncertainty. This challenge could be overcome by composing various sources of renewable energies with complimentary natures. This paper devises an explicit mathematical framework to compromise the contribution of wind and solar energies. The optimization problem is to maximize the system reliability subject to a fixed monetary investment associated with both wind and solar. The problem formulation is based on mixed-integer programming (MIP) format in which... 

    Dye-sensitized solar cells based on a single layer deposition of TiO 2 from a new formulation paste and their photovoltaic performance

    , Article Solar Energy ; Volume 86, Issue 9 , 2012 , Pages 2654-2664 ; 0038092X (ISSN) Mohammadi, M. R ; Louca, R. R. M ; Fray, D. J ; Welland, M. E ; Sharif University of Technology
    Abstract
    A new strategy for enhancing the efficiency and reducing the production cost of TiO 2 solar cells by design of a new formulated TiO 2 paste with tailored crystal structure and morphology is reported. The conventional three- or four-fold layer deposition process was eliminated and replaced by a single layer deposition of TiO 2 compound. Different TiO 2 pastes with various crystal structures, morphologies and crystallite sizes were prepared by an aqueous particulate sol-gel process. Based on simultaneous differential thermal (SDT) analysis the minimum annealing temperature to obtain organic-free TiO 2 paste was determined at 400°C, being one of the lowest crystallization temperatures of TiO 2... 

    Introducing a dimensionless number as tank selector in hybrid solar thermal energy storage systems

    , Article Evolutionary Ecology ; Volume 25, Issue 4 , 2011 , Pages 871-876 ; 02697653 (ISSN) Mohamadi, Z. M ; Zohoor, H ; Sharif University of Technology
    2011
    Abstract
    Using hybrid energy storage system is a method for increasing the storage capability of solar thermal energy. If multiple energy storage devices with complementary performance characteristics are used together, the resulting system will be a 'Hybrid Energy Storage System'. In other words, a Hybrid Energy Storage System (HESS) has several media available for storage at any time. In this way, increase in storable energy is obtained without increasing collectors' area. When there are more than one storage mediums, the system should be able to choose the best medium for storing energy according to the conditions. In the previous works, an optimizer program was used to find the proper medium... 

    TiO 2 fibers enhance film integrity and photovoltaic performance for electrophoretically deposited dye solar cell photoanodes

    , Article ACS Applied Materials and Interfaces ; Volume 3, Issue 3 , February , 2011 , Pages 638-641 ; 19448244 (ISSN) Shooshtari, L ; Rahman, M ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    2011
    Abstract
    Nanoparticulated TiO 2 fibers as one-dimensional long structures were introduced into TiO 2 P25 nanoparticle films using coelectrophoretic deposition. This prevented the usual crack formation occurring in wet coatings, and resulted in less porosity and higher roughness factor of the films that provided more favorable conditions for electron transport. The films used as the photoanode of a dye solar cell (DSC) produced 65% higher photovoltaic efficiency. TiO 2 fibers can be excellent binders in single-step, organic-free electrophoretic deposition of TiO 2 for DSC photoanode  

    ANN and ANFIS models to predict the performance of solar chimney power plants

    , Article Renewable Energy ; Volume 83 , November , 2015 , Pages 597-607 ; 09601481 (ISSN) Amirkhani, S ; Nasirivatan, S ; Kasaeian, A. B ; Hajinezhad, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    A precise model of the behavior of complex systems such as solar chimney power plants (SCPP) would be much beneficial. Also, such a model would be quite contributing to the control of solar chimney operation. In this paper, the identification and modeling of SCPP utilizing ANN and Adaptive Neuro Fuzzy Inference System (ANFIS) are discussed. The modeling is based on the data of three working days which were taken of a built pilot in University of Zanjan, Iran. The input parameters are time, radiation and ambient temperature, while the output is the air velocity at the inlet of the chimney. The results of ANN model and ANFIS model were compared; it was found that ANFIS model exhibited better... 

    Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    , Article International Journal of Control ; 2015 ; 00207179 (ISSN) Mahdian Dehkordi, N ; Namvar, M ; Karimi, H ; Piya, P ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters’ changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the...