Loading...
Search for: solar-power-generation
0.011 seconds
Total 105 records

    Resolving a critical instability in perovskite solar cells by designing a scalable and printable carbon based electrode-interface architecture

    , Article Advanced Energy Materials ; Volume 8, Issue 31 , 2018 ; 16146832 (ISSN) Mashhoun, S ; Hou, Y ; Chen, H ; Tajabadi, F ; Taghavinia, N ; Egelhaaf, H. J ; Brabec, C. J ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Thin-film solar cells based on hybrid organo-halide lead perovskites achieve over 22% power conversion efficiency (PCE). A photovoltaic technology at such high performance is no longer limited by efficiency. Instead, lifetime and reliability become the decisive criteria for commercialization. This requires a standardized and scalable architecture which does fulfill all requirements for larger area solution processing. One of the most highly demanded technologies is a low temperature and printable conductive ink to substitute evaporated metal electrodes for the top contact. Importantly, that electrode technology must have higher environmental stability than, for instance, an evaporated silver... 

    Greener, nonhalogenated solvent systems for highly efficient Perovskite solar cells

    , Article Advanced Energy Materials ; Volume 8, Issue 21 , 25 July , 2018 ; 16146832 (ISSN) Yavari, M ; Mazloum Ardakani, M ; Gholipour, S ; Tavakoli, M. M ; Turren Cruz, S. H ; Taghavinia, N ; Gratzel, M ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    All current highest efficiency perovskite solar cells (PSCs) use highly toxic, halogenated solvents, such as chlorobenzene (CB) or toluene (TLN), in an antisolvent step or as solvent for the hole transporter material (HTM). A more environmentally friendly antisolvent is highly desirable for decreasing chronic health risk. Here, the efficacy of anisole (ANS), as a greener antisolvent for highest efficiency PSCs, is investigated. The fabrication inside and outside of the glovebox showing high power conversion efficiencies of 19.9% and 15.5%, respectively. Importantly, a fully nonhalogenated solvent system is demonstrated where ANS is used as both the antisolvent and the solvent for the HTM.... 

    Carbon nanoparticles in high-performance perovskite solar cells

    , Article Advanced Energy Materials ; Volume 8, Issue 12 , 2018 ; 16146832 (ISSN) Yavari, M ; Mazloum Ardakani, M ; Gholipour, S ; Marinova, N ; Delgado, J. L ; Turren Cruz, S. H ; Domanski, K ; Taghavinia, N ; Saliba, M ; Gratzel, M ; Hagfeldt, A ; Tress, W ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    In the past few years, organic–inorganic metal halide ABX3 perovskites (A = Rb, Cs, methylammonium, formamidinium (FA); B = Pb, Sn; X = Cl, Br, I) have rapidly emerged as promising materials for photovoltaic applications. Tuning the film morphology by various deposition techniques and additives is crucial to achieve solar cells with high performance and long-term stability. In this work, carbon nanoparticles (CNPs) containing functional groups are added to the perovskite precursor solution for fabrication of fluorine-doped tin oxide/TiO2/perovskite/spiro-OMeTAD/gold devices. With the addition of CNPs, the perovskite films are thermally more stable, contain larger grains, and become more... 

    The effect of lithium doping in solution-processed nickel oxide films for perovskite solar cells

    , Article ChemPhysChem ; Volume 20, Issue 24 , 2019 , Pages 3322-3327 ; 14394235 (ISSN) Saki, Z ; Sveinbjornsson, K ; Boschloo, G ; Taghavinia, N ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    The effect of substitutional Li doping into NiOx hole transporting layer (HTL) for use in inverted perovskite solar cells was systematically studied. Li doped NiOx thin films with preferential crystal growth along the (111) plane were deposited using a simple solution-based process. Mott-Schottky analysis showed that hole carrier concentration (NA) is doubled by Li doping. Utilizing 4 % Li in NiOx improved the power conversion efficiency (PCE) of solar devices from 9.0 % to 12.6 %. Photoluminescence quenching investigations demonstrate better hole capturing properties of Li:NiOx compared to that of NiOx, leading to higher current densities by Li doping. The electrical conductivity of NiOx is... 

    Hydrogen peroxide-assisted photocatalysis under solar light irradiation: Interpretation of interaction effects between an active photocatalyst and H2O2

    , Article Canadian Journal of Chemical Engineering ; Volume 97, Issue 7 , 2019 , Pages 2009-2014 ; 00084034 (ISSN) Feilizadeh, M ; Attar, F ; Mahinpey, N ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    In this work, the combination of H2O2 and an active visible-light-driven photocatalyst (Ag-S/PEG/TiO2) was utilized under natural solar radiation for the degradation of 2-nitrophenol (2-NP), and interaction effects between the photocatalyst and hydrogen peroxide were analyzed. For this purpose, experiments were designed using the response surface methodology based on the central composite design. The resulting data was utilized to obtain a model for the prediction of response (the degradation efficiency) as a function of two independent factors (H2O2 concentration and the photocatalyst loading). The statistical analysis indicated that optimum values of each of the two independent factors... 

    Development of the energy hub networks based on distributed energy technologies

    , Article Simulation Series, 26 July 2015 through 29 July 2015 ; Volume 47, Issue 10 , 2015 , Pages 216-223 ; 07359276 (ISSN) Maroufmashat, A ; Elkamel, A ; Sattari Khavas, S ; Fowler, M ; Roshandel, R ; Elsholkami, M ; Sharif University of Technology
    The Society for Modeling and Simulation International  2015
    Abstract
    In this paper the creation of multiple energy hubs that make up a complex energy network are modeled and optimized for a selection of six scenarios to examine both their financial viability and potential reduction of greenhouse gas emissions. As a proposed case study scenario for the model, three energy hubs are considered: a 'residential complex (RC)', a 'commercial shopping plaza (CS)', and a 'school (S)'. The use of combined heat and power systems, solar photovoltaic, solar collectors and network interaction are also examined for their impact on efficiency and cost. The modeling is undertaken and carried out by General Algebraic Modeling System (GAMS). It is shown that cost can be reduced... 

    The impact of climate condition on the optimal size of direct coupled photovoltaic-electrolyzer systems

    , Article Simulation Series, 26 July 2015 through 29 July 2015 ; Volume 47, Issue 10 , July , 2015 , Pages 224-229 ; 07359276 (ISSN) Sayedin, F ; Maroufmashat, A ; Sattari khavas S ; Elkamel, A ; Aladwani, S ; Sharif University of Technology
    The Society for Modeling and Simulation International  2015
    Abstract
    Solar energy exists extensively in all parts of the world. However the intermittency of solar energy presents critical challenges to PV system. The intermittency can be covered by storing solar energy in chemical bonds such as hydrogen. This process can be performed by photovoltaic powered electrolysis of water. The energy transfer efficiency between PV and electrolyzer is subject to the distance between maximum power points (MPP) of PV module and operating points. The operating points can be adjusted by optimizing the design parameters of the electrolyzer but the maximum power points are function of PV module characteristics, solar radiation and ambient temperature. Therefore the weather... 

    Solar-hydrogen renewable supply system optimisation based on demand side management

    , Article International Journal of Ambient Energy ; 2019 ; 01430750 (ISSN) Haddadi, M ; Jafarinejad, T ; Badpar, F ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Stand-alone hybrid power systems are an alternative to main electricity grids, where the grid extension is costly or the trifling local consumption would not justify its expansion. However, lack of consistency and uniformity in renewable energy sources, and the restrictions of energy storage systems make system sizing a challenging task. Optimum size of a stand-alone system depends on several factors including energy demand function. In this paper, different types of demand functions are addressed for optimising a solar-hydrogen supply system. Different parameters are defined to investigate the impact of household population on the power generation cost, and also to determine the optimum... 

    Solar-hydrogen renewable supply system optimisation based on demand side management

    , Article International Journal of Ambient Energy ; 2019 ; 01430750 (ISSN) Haddadi, M ; Jafarinejad, T ; Badpar, F ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Stand-alone hybrid power systems are an alternative to main electricity grids, where the grid extension is costly or the trifling local consumption would not justify its expansion. However, lack of consistency and uniformity in renewable energy sources, and the restrictions of energy storage systems make system sizing a challenging task. Optimum size of a stand-alone system depends on several factors including energy demand function. In this paper, different types of demand functions are addressed for optimising a solar-hydrogen supply system. Different parameters are defined to investigate the impact of household population on the power generation cost, and also to determine the optimum... 

    Techno-economic analysis of a modified concentrating photovoltaic/organic Rankine cycle system

    , Article International Journal of Ambient Energy ; 17 February , 2020 Moltames, R ; Roshandel, R ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    The combination of concentrating photovoltaic (CPV) and organic Rankine cycle (ORC) systems not only leads to a reduction of photovoltaic (PV) operating temperature, but also leads to an additional electric power production. Increase in the temperature of the PV decreases its operating efficiency, while increases the ORC efficiency. Therefore, there is an optimum temperature in which the total electricity produced by the combined system will be maximum. In this study, a modified CPV/ORC system is simulated and the optimum operating temperature of the PV panel is determined for different PV efficiencies. The most striking result is that increase in the PV nominal efficiency will result in the... 

    Thermo-economic analysis and multi-objective optimization of a solar dish Stirling engine

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 43, Issue 22 , 2021 , Pages 2861-2877 ; 15567036 (ISSN) Rostami, M ; Assareh, E ; Moltames, R ; Jafarinejad, T ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Stirling engines operate in a variety of temperatures and the electric power production via dish Stirling systems could be considered as an appropriate alternative for high-temperature solar concentrator energy harvesting systems. To this end, by performing various studies and analyses on the engine, Stirling cycle, and heat exchangers while utilizing the solar energy as the input thermal energy of the Stirling engine, parameters with the highest effect on the output power and engine stability are detected and considered as optimization variables. In this case, output power, thermal efficiency, and economic evaluation are taken to be the three suitable objective functions for multi-objective... 

    Techno-economic analysis of a modified concentrating photovoltaic/organic Rankine cycle system

    , Article International Journal of Ambient Energy ; Volume 43, Issue 1 , 2022 , Pages 2026-2038 ; 01430750 (ISSN) Moltames, R ; Roshandel, R ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The combination of concentrating photovoltaic (CPV) and organic Rankine cycle (ORC) systems not only leads to a reduction of photovoltaic (PV) operating temperature, but also leads to an additional electric power production. Increase in the temperature of the PV decreases its operating efficiency, while increases the ORC efficiency. Therefore, there is an optimum temperature in which the total electricity produced by the combined system will be maximum. In this study, a modified CPV/ORC system is simulated and the optimum operating temperature of the PV panel is determined for different PV efficiencies. The most striking result is that increase in the PV nominal efficiency will result in the... 

    Solar-hydrogen renewable supply system optimisation based on demand side management

    , Article International Journal of Ambient Energy ; Volume 43, Issue 1 , 2022 , Pages 754-763 ; 01430750 (ISSN) Haddadi, M ; Jafarinejad, T ; Badpar, F ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Stand-alone hybrid power systems are an alternative to main electricity grids, where the grid extension is costly or the trifling local consumption would not justify its expansion. However, lack of consistency and uniformity in renewable energy sources, and the restrictions of energy storage systems make system sizing a challenging task. Optimum size of a stand-alone system depends on several factors including energy demand function. In this paper, different types of demand functions are addressed for optimising a solar-hydrogen supply system. Different parameters are defined to investigate the impact of household population on the power generation cost, and also to determine the optimum... 

    Sizing and performance analysis of standalone hybrid photovoltaic/battery/hydrogen storage technology power generation systems based on the energy hub concept

    , Article International Journal of Green Energy ; Volume 14, Issue 2 , 2017 , Pages 121-134 ; 15435075 (ISSN) Homayouni, F ; Roshandel, R ; Hamidi, A. A ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    In this study, the optimal sizing and performance analysis of a standalone integrated solar power system equipped with different storage scenarios to supply the power demand of a household is presented. One of the main purposes when applying solar energy resource is to face the increasing environmental pollutions resulting from fossil fuel based electricity sector. To this end, and to compare and examine two energy storage technologies (battery and hydrogen storage technology), three storage scenarios including battery only, hydrogen storage technology only and hybrid storage options are evaluated. An optimization framework based on Energy Hub concept is used to determine the optimum sizes... 

    Influence of photoanode architecture on light scattering mechanism and device performance of dye-sensitized solar cells using TiO2 hollow cubes and nanoparticles

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 86 , May , 2018 , Pages 81-91 ; 18761070 (ISSN) Sarvari, N ; Mohammadi, M. R ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2018
    Abstract
    Herein, we report the impact of light scattering mechanism on photovoltaic and photoelectrochemical performance of dye-sensitized solar cell (DSC) devices composed of TiO2 nanoparticles and hollow cubes. DSCs are designed by two different light scattering modes (i.e., mode I in form of single layer electrode containing nanoparticles and hollow cubes and mode II in the form of double layer electrode comprising active and scattering layers made of nanoparticles and mixtures of nanoparticles and hollow cubes, respectively). The synthesized anatase-TiO2 hollow cubes (200–400 nm) and nanoparticles (15–30 nm) are employed to enhance the optical length and light harvesting of photoanodes,... 

    Analytical study of electro-elastic fields in quantum nanostructure solar cells: the inter-nanostructure couplings and geometrical effects

    , Article Acta Mechanica ; Volume 229, Issue 7 , 2018 , Pages 3089-3106 ; 00015970 (ISSN) Rashidinejad, E ; Naderi, A. A ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    Recent investigations on multifunctional piezoelectric semiconductors have shown their excellent potential as photovoltaic components in high-efficiency third-generation quantum nanostructure (QNS) solar cells. The current work is devoted to studying the electro-elastic behavior of high-density QNS photovoltaic semiconductors within which initial mismatch strains of arrays of quantum dots (QDs) or quantum wires (QWRs) induce coupled electro-mechanical fields. The inter-nanostructure couplings which are of great importance in high-density QNS arrays are incorporated in the presented analytical framework. In practice, QNSs with different geometries such as spherical, cuboidal, or pyramidal QDs... 

    Nitrogen-doped submicron-size TiO2 particles as bifunctional light scatterers in dye-sensitized solar cells

    , Article Applied Physics A: Materials Science and Processing ; Volume 119, Issue 4 , 2015 , Pages 1283-1290 ; 09478396 (ISSN) Shogh, S ; Mohammadpour, R ; Iraji zad, A ; Taghavinia, N ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    The structural, electrical, optical, and photovoltaic properties of aggregated submicron nitrogen-doped TiO2 particles (NTiO2) and the influence of utilizing them, in comparison with undoped ones, as the light-scattering layer of dye-sensitized solar cells were investigated. Field emission scanning electron microscope, X-ray diffraction, and diffuse reflectance spectra showed that both type samples have similar morphology, crystal phase, and scattering feature. Moreover, photoluminescence, Mott–Schottkey, and photovoltaic characteristics such as IMPS/IMVS and charge extraction analysis indicated that the NTiO2 layer is an efficient scatterer in two aspects: enhancement of light-harvesting... 

    Modeling and techno-economic study of a solar reverse osmosis desalination plant

    , Article International Journal of Environmental Science and Technology ; Volume 19, Issue 9 , 2022 , Pages 8727-8742 ; 17351472 (ISSN) Ebrahimpour, B ; Hajialigol, P ; Boroushaki, M ; Shafii, M. B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this research, the design of a solar reverse osmosis desalination plant was investigated by integrating various components using TRNSYS and ROSA software. To this goal, a two-stage reverse osmosis system with 50% recovery in the city of Chabahar was modeled. The calculations were performed in three different case studies, i.e., a photovoltaic power plant, a solar collector power plant with Organic Rankine Cycles, and a photovoltaic thermal power plant with Organic Rankine Cycles, with the reverse osmosis desalination plant being a novel investigation. Water production and electrical energy generation of each case study were evaluated both on a daily and yearly bases. The simulation... 

    A review on the applications of micro-/nano-encapsulated phase change material slurry in heat transfer and thermal storage systems

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 145, Issue 2 , 2021 , Pages 245-268 ; 13886150 (ISSN) Ghoghaei, M. S ; Mahmoudian, A ; Mohammadi, O ; Shafii, M. B ; Jafari Mosleh, H ; Zandieh, M ; Ahmadi, M. H ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In modern heat transfer systems, thermal storage not only causes the balance between demand and supply, but also improves the heat transfer efficiency in these systems. In the present study, a comprehensive review of the applications of micro- or nano-encapsulated phase change slurries (MPCMs/NPCMs), as well as their effects on thermal storage and heat transfer enhancement, has been conducted. MPCMs/NPCMs have a myriad of applications and various usages such as pipe and channel flows, photovoltaic/thermal, solar heaters, air conditioning systems, storage tanks and heat pipes that have been categorized and studied. It was found that there are many advantageous adding MPCM/NPCM to the base... 

    Efficient dye-sensitized solar cells based on carbon-doped TiO2 hollow spheres and nanoparticles

    , Article Journal of Materials Science: Materials in Electronics ; Volume 26, Issue 11 , 2015 , Pages 8863-8876 ; 09574522 (ISSN) Tabari Saadi, Y ; Mohammadi, M. R ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Different structures of TiO2 photoelectrodes are fabricated with various arrangement modes of the layers. TiO2 nanoparticles, synthesized by stabilizing agent free non-hydrolytic sol–gel method, are employed as the under layer, whereas carbon-doped TiO2 hollow spheres, prepared by hydrothermally grown carbon template, are used as the scattering layer of solar cells. The nanoparticles (22 nm) have anatase structure, while 300–700 nm hollow spheres show mixtures of anatase and rutile phases. X-ray photoelectron spectroscopy confirms that carbon is doped into TiO2 hollow spheres, resulting in a decrease in band gap energy in the range 2.96–3.13 eV compared with 3.04 eV band gap energy for the...