Loading...
Search for: static-and-dynamic
0.006 seconds
Total 56 records

    On the chaotic vibrations of electrostatically actuated arch micro/nano resonators: a parametric study

    , Article International Journal of Bifurcation and Chaos ; Volume 25, Issue 8 , July , 2015 ; 02181274 (ISSN) Tajaddodianfar, F ; Hairi Yazdi, M. R ; Nejat Pishkenari, H ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2015
    Abstract
    Motivated by specific applications, electrostatically actuated bistable arch shaped micro-nano resonators have attracted growing attention in the research community in recent years. Nevertheless, some issues relating to their nonlinear dynamics, including the possibility of chaos, are still not well known. In this paper, we investigate the chaotic vibrations of a bistable resonator comprised of a double clamped initially curved microbeam under combined harmonic AC and static DC distributed electrostatic actuation. A reduced order equation obtained by the application of the Galerkin method to the nonlinear partial differential equation of motion, given in the framework of Euler-Bernoulli beam... 

    On the theoretical and molecular dynamic methods for natural frequencies of multilayer graphene nanosheets incorporating nonlocality and interlayer shear effects

    , Article Mechanics of Advanced Materials and Structures ; Volume 29, Issue 20 , 2022 , Pages 2873-2883 ; 15376494 (ISSN) Nikfar, M ; Taati, E ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, a multiplate nonlocal shear model and molecular dynamic simulations are presented to investigate the effects of interlayer shear and nonlocality on the natural frequencies of multilayer graphene sheets (MLGSs). From one aspect in the optimal design of such structures, the interaction between graphene layers, which can significantly vary the static and dynamic behavior due to lack of solidity of layers stack, should be considered. On the other hand, it is requied that the nonlocality phenomenon which has an effective role in the mechanical analysis of nanostructures is taken into account. To this aim, the equation of motion along with corresponding boundary conditions is... 

    Modeling the coupled effects of surface layer and size effect on the static and dynamic instability of narrow nano-bridge structure

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 39, Issue 5 , 2017 , Pages 1735-1744 ; 16785878 (ISSN) Keivani, M ; Koochi, A ; Kanani, A ; Navazi, H. M ; Abadyan, M ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    For modeling the electromechanical behavior of nano-bridge structures with slender narrow-width beam elements, not only the simultaneous effects of surface layer and size dependency should be taken into account but also corrected force models should be considered. In this paper, the instability of a narrow-width nano-bridge is studied based on strain gradient theory and Gurtin–Murdoch surface elasticity. The mid-plane stretching is incorporated in the governing equation as well as corrected force distribution. Using Rayleigh–Ritz method, a parametric analysis is conducted to examine the impacts of surface layer, size dependence, dispersion forces and structural damping on static and dynamic... 

    Nonlinear dynamics of nano-resonators: an analytical approach

    , Article Microsystem Technologies ; Volume 22, Issue 9 , 2016 , Pages 2259-2271 ; 09467076 (ISSN) Maani Miandoab, E ; Nejat Pishkenari, H ; Yousefi Koma, A ; Sharif University of Technology
    Springer Verlag 
    Abstract
    Prior to the design and fabrication of MEMS/NEMS devices, analysis of static and dynamic behaviors of these systems is necessary. In the present study, the nonlinear dynamic behavior of micro- and nano-mechanical resonators is investigated and classified based on the resonator’s physical parameters for first time. The Galerkin method is used to convert the distributed-parameter model to a nonlinear ordinary differential equation where mid-plane stretching, axial stress, DC electrostatic and AC harmonic voltages are taken into account. To obtain the analytical frequency response of the micro resonator near its primary resonance, the second order multiple scales method is applied to the... 

    On the power allocation strategies in coordinated multi-cell networks using Stackelberg game

    , Article Eurasip Journal on Wireless Communications and Networking ; Volume 2016, Issue 1 , 2016 ; 16871472 (ISSN) Haddadi, S ; Oliaiee, A ; Behroozi, H ; Khalaj, B. H ; Sharif University of Technology
    Springer International Publishing 
    Abstract
    In this paper, we study the power allocation problem in multi-cell OFDMA networks, where given the tradeoff between user satisfaction and profit of the service provider, maximizing the revenue of the service provider is also taken into account. Consequently, two Stackelberg games are proposed for allocating proper powers to central and cell-edge users. In our algorithm, assuming the fact that users agree to pay more for better QoS level, the service provider imposes optimum prices for unit-power transmitted to users as they request different levels of QoS. In addition, in order to improve system performance at cell-edge locations, users are divided into two groups based on their distance to... 

    Effect of size dependency on in-plane vibration of circular micro-rings

    , Article Scientia Iranica ; Volume 24, Issue 4 , 2017 , Pages 1996-2008 ; 10263098 (ISSN) Karimzadeh, A ; Ahmadian, M. T ; Rahaeifard, M ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    In this paper, based on the modified couple stress theory, the size-dependent dynamic behavior of circular rings on elastic foundation is investigated. The ring is modeled by Euler-Bernoulli and Timoshenko beam theories, and Hamilton's principle is utilized to derive the equations of motion and boundary conditions. The formulation derived is a general form of the equation of motion of circular rings and can be reduced to the classical form by eliminating the size-dependent terms. On this basis, the size-dependent natural frequencies of a circular ring are calculated based on the non-classical Euler-Bernoulli and Timoshenko beam theories. The findings are compared with classical beam... 

    Localizing exception faults in Android applications

    , Article Scientia Iranica ; Volume 26, Issue 3 D , 2019 , Pages 1567-1588 ; 10263098 (ISSN) Mirzaei, H ; Heydarnoori, A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In software programs, most of the time, there is a chance for occurrence of faults in general, and exception faults in particular. Localizing those pieces of code that are responsible for a particular fault is one of the most complicated tasks, and it can produce incorrect results if done manually. Semi-automated and fully-automated techniques have been introduced to overcome this issue. However, despite recent advances in fault localization techniques, they are not necessarily applicable to Android applications because of their special characteristics such as context-awareness, use of sensors, being executable on various mobile devices, limited hardware resources, etc. To this aim, in this... 

    Localizing exception faults in Android applications

    , Article Scientia Iranica ; Volume 26, Issue 3 D , 2019 , Pages 1567-1588 ; 10263098 (ISSN) Mirzaei, H ; Heydarnoori, A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In software programs, most of the time, there is a chance for occurrence of faults in general, and exception faults in particular. Localizing those pieces of code that are responsible for a particular fault is one of the most complicated tasks, and it can produce incorrect results if done manually. Semi-automated and fully-automated techniques have been introduced to overcome this issue. However, despite recent advances in fault localization techniques, they are not necessarily applicable to Android applications because of their special characteristics such as context-awareness, use of sensors, being executable on various mobile devices, limited hardware resources, etc. To this aim, in this... 

    Static and dynamic behavior of foam stabilized by modified nanoparticles: Theoretical and experimental aspects

    , Article Chemical Engineering Research and Design ; Volume 158 , 2020 , Pages 114-128 Suleymani, M ; Ashoori, S ; Ghotbi, C ; Moghadasi, J ; Kharrat, R ; Sharif University of Technology
    Institution of Chemical Engineers  2020
    Abstract
    Gas flooding is a practical secondary scenario for enhanced oil recovery. Channeling and fingering of the injected gas are the major problems facing this technique. These challenges can be mitigated by the injection of gas as foam. However, foam stability influences the overall efficiency of the process, which could be improved by nanoparticles (NPs). This work provides a theoretical and experimental analysis of the NPs wettability effects on foam behavior, in both static and dynamic states. The treated calcite (CaCO3) NPs along with a cationic surfactant (HTAB) were used for this purpose. By comparison of theoretical and experimental data, it was shown that the foam stability in the... 

    Development of a three-dimensional magnetic equivalent circuit model for axial flux machines

    , Article IEEE Transactions on Industrial Electronics ; Volume 67, Issue 7 , 2020 , Pages 5758-5767 Alipour-Sarabi, R ; Nasiri Gheidari, Z ; Oraee, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Numerical and analytical methods are two methods to evaluate the performance of electrical machines. This article provides a comparison between numerical and analytical methods. Electrical machine software typically uses numerical methods to solve the electromagnetic equations. On the other hand, analytical methods are faster and more intuitive. A general analytical modeling technique to evaluate the performance of axial flux machines including but not limited to wound rotor resolvers is presented here. The proposed model is based on the actual three-dimensional (3-D) magnetic equivalent circuit (MEC). The accuracy of the proposed model depends on the number of radial layers in the... 

    A comparative study of earthquake source models in high-order accurate tsunami simulations

    , Article Ocean Modelling ; Volume 141 , 2019 ; 14635003 (ISSN) Hajihassanpour, M ; Bonev, B ; Hesthaven, J. S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The discontinuous Galerkin method is used to solve the non-linear spherical shallow water equations with Coriolis force. The numerical method is well-balanced and takes wetting/drying into account. The two fold goal of this work is a comparative study of dynamic and static tsunami generation by seabed displacement and the careful validation of these source models. The numerical results show that the impact of the choice of seabed displacement model can be significant and that using a static approach may result in inaccurate results. For the validation of the studies, we consider measurements from satellites and buoy networks for the 2011 Tohoku event and the 2004 Sumatra–Andaman tsunami. The... 

    Effect of Porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures

    , Article Computers and Mathematics with Applications ; Volume 77, Issue 10 , 2019 , Pages 2608-2626 ; 08981221 (ISSN) Pourjabari, A ; Esmailpoor Hajilak, Z ; Mohammadi, A ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This article investigates the influence of porosity on free and forced vibration characteristics of a nanoshell reinforced by graphene platelets (GPL). The material properties of piece-wise graphene-reinforced composites (GPLRCs) are assumed to be graded in the thickness direction of a cylindrical nanoshell and estimated using a nanomechanical model. In addition, because of imperfection of the current structure, three kinds of porosity distributions are considered. The nanostructure is modeled using modified strain gradient theory (MSGT) which is a size-dependent theory with three length scale parameters. The novelty of the current study is to consider the effects of porosity, GPLRC and MSGT... 

    A mechanistic study of emulsion flooding for mobility control in the presence of fatty acids: Effect of chain length

    , Article Fuel ; Volume 276 , 2020 Alizadeh, S ; Suleymani, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Emulsion flooding is a promising method for enhanced oil recovery (EOR). The static and dynamic behavior of the emulsions is greatly influenced by the nature of the applied surfactant. In this work, the effect of fatty acids, as natural surface-active agents, and their chain length on the emulsion behavior was investigated in both bulk and porous media. A panel of the fatty acids with different chain lengths (6 < C < 18) was applied at constant concentration and pH. Upon the static stability tests, emulsion stability at the optimum value of chain length (C14) was increased by two orders of magnitude. Under the optimal condition, the hydrogen bonding between dissociated and undissociated... 

    Computational investigation of stenosis in curvature of coronary artery within both dynamic and static models

    , Article Computer Methods and Programs in Biomedicine ; Volume 185 , 2020 Biglarian, M ; Momeni Larimi, M ; Hassanzadeh Afrouzi, H ; Moshfegh, A ; Toghraie, D ; Javadzadegan, A ; Rostami, S ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Background and Objective: Blood flow variation during cardiac cycle is the main mechanism of atherosclerotic development which is dependent on. Methods: The present work mainly tends to investigate stenosis effect in dynamic curvature of coronary artery. This paper presents numerical investigations on wall shear stress profiles in three-dimensional pulsatile flow through curved stenotic coronary arteries for both static and dynamic model. In order to do so, three-dimensional models related to the curved arteries with two degrees of stenosis (30% and 50%). Results: Lower amount of wall shear stress is found near the inner wall of artery distal to the plaque region (stenosis) and in both... 

    A 7 bit, 3 GHz bandwidth random-time-interleaved-hybrid DAC using a novel self-healing structure for DCE in 65 nm CMOS technology

    , Article AEU - International Journal of Electronics and Communications ; Volume 134 , 2021 ; 14348411 (ISSN) Sariri, H ; Torkzadeh, P ; Sadughi, S ; Sharif University of Technology
    Elsevier GmbH  2021
    Abstract
    The application of time-interleaved structure leads to new amplitude and time errors while reducing many static and dynamic errors. In this case, both amplitude and time error are decreased by circuit structures integrated into a 7-bit DAC. In the present study, a new structure was proposed based on the randomization of two-interleaved paths in order to reduce the amplitude error, which can be extended to the N-channels-interleaved. In order to reduce the cycle-duty-error, a self-correction structure based on calculating the amplitude of the error before and measuring the time of this error along with the passage of the main signal through the output multiplexer is provided. The advantage of... 

    Implementation of Time Splitting Projection Method in water hammer modeling in deformable pipes

    , Article International Journal of Pressure Vessels and Piping ; Volume 98 , October , 2012 , Pages 30-42 ; 03080161 (ISSN) Niroomandi, A ; Borghei, S. M ; Bohluly, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this paper Time Splitting Projection Method (TSPM) has been implemented to model transient flow in a deformable pipe. In addition a quasi-steady model and the Brunone unsteady model have been incorporated into the algorithm to consider the effect of static and dynamic friction on the shape and attenuation of pressure waves. The deformation of the cross section of the pipe due to the change of pressure has been considered using Hooke's Law of elasticity. Numerical results of the model have been compared with a simple analytical test and results of experimental measurements for water hammer problem with different Reynolds numbers in a simple pipeline system; besides, numerical stability... 

    Application of electrostatically actuated carbon nanotubes in nanofluidic and bio-nanofluidic sensors and actuators

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 73 , September , 2015 , Pages 127-136 ; 02632241 (ISSN) Seyyed Fakhrabadi, M. M ; Rastgoo, A ; Ahmadian, M. T ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The paper investigates the effects of fluid flow on the static and dynamic behaviors of electrostatically actuated carbon nanotubes using nonlocal elasticity theory. The influences of various parameters of fluid flow including fluid viscosity, velocity, mass and temperature on the mechanical behaviors of the carbon nanotubes under static and step DC voltages are studied using this theory. The results computed from the nonlocal elasticity theory are compared with those estimated using the classical elasticity theorem and the outcomes demonstrate the applicability of the electrostatically actuated carbon nanotubes as nano sensors and nano actuators in nanofluidic systems. The nanosystem can be... 

    On the theoretical and molecular dynamic methods for natural frequencies of multilayer graphene nanosheets incorporating nonlocality and interlayer shear effects

    , Article Mechanics of Advanced Materials and Structures ; 2021 ; 15376494 (ISSN) Nikfar, M ; Taati, E ; Asghari, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    In this paper, a multiplate nonlocal shear model and molecular dynamic simulations are presented to investigate the effects of interlayer shear and nonlocality on the natural frequencies of multilayer graphene sheets (MLGSs). From one aspect in the optimal design of such structures, the interaction between graphene layers, which can significantly vary the static and dynamic behavior due to lack of solidity of layers stack, should be considered. On the other hand, it is requied that the nonlocality phenomenon which has an effective role in the mechanical analysis of nanostructures is taken into account. To this aim, the equation of motion along with corresponding boundary conditions is... 

    Static and dynamic analysis of a clamp-clamp nano-beam under electrostatic actuation and detection considering intermolecular forces

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 10 , 2013 ; 9780791856390 (ISBN) Mojahedi, M ; Barari, A ; Firoozbakhsh, K ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Micro/nano gyroscopes which can measure angular rate or angle are types of merging gyroscope technology with MEMS/NEMS technology. They have extensively used in many fields of engineering, such as automotive, aerospace, robotics and consumer electronics. There are many studies of a variety of gyroscopes with various drive and detect methods and different resonator structures in last years. In case of electrostatically actuated and detected beam micro/nano-gyroscopes, DC voltages are applied in driving and sensing directions and AC voltage is utilized in driving direction in order to excite drive oscillation. The intermolecular surface forces are especially significant when the gyroscopes are... 

    New insight into the filtration control of drilling fluids using a graphene-based nanocomposite under static and dynamic conditions

    , Article ACS Sustainable Chemistry and Engineering ; Volume 9, Issue 38 , 2021 , Pages 12844-12857 ; 21680485 (ISSN) Movahedi, H ; Jamshidi, S ; Hajipour, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    During oil and gas well drilling, the filtration control of bentonite water-based drilling fluids (BT-WBDFs), as an environmentally friendly fluid, is crucial to avoid formation damage and swelling shale problems. One of the most critical problems is undesirable changes in the rheology and filtration properties of the BT-WBDFs because of salt contamination. Herein, the potential of using both graphene oxide (GO) nanosheets and a graphene oxide-polyacrylamide (GO-PAM) nanocomposite is evaluated for controlling the filtration properties, especially in a salty medium. First, GO nanosheets were functionalized, and then the GO-PAM nanocomposite was synthesized using the solution polymerization...