Loading...
Search for: surface-modification
0.007 seconds
Total 66 records

    An investigation on the structural characteristics and reinforcement of melt processed polyamide 66/multiwalled carbon nanotube composites

    , Article Polymers for Advanced Technologies ; Vol. 25, issue. 4 , 2014 , pp. 406-417 ; ISSN: 10427147 Shojaei, A ; Nourbakhsh, P ; Faghihi, M ; Sharif University of Technology
    Abstract
    Properties of melt processed polyamide 66 (PA66)/multiwalled carbon nanotube composite were first characterized experimentally. The experimental results exhibited the formation of crystalline layer around the nanotubes and a considerable enhancement in mechanical properties by incorporation of multiwalled carbon nanotube up to 1 wt%. Mechanical properties were analyzed in terms of structural parameters using micromechanical models proposed in this study. It was suggested that the mechanical properties were greatly dominated by crystalline layer and nanotube length. It was also deduced that the melt mixing process caused a significant nanotube breakage restricting further enhancement of... 

    Supramolecular polycaprolactone nanocomposite based on functionalized hydroxyapatite

    , Article Journal of Bioactive and Compatible Polymers ; Volume 27, Issue 5 , January , 2012 , Pages 467-480 ; 08839115 (ISSN) Mehmanchi, M ; Shokrollahi, P ; Atai, M ; Omidian, H ; Bagheri, R ; Sharif University of Technology
    SAGE  2012
    Abstract
    Arms bearing ureido-pyrimidinone functional groups with self-association capability (through quadruple hydrogen bonds) were successfully grafted onto hydroxyapatite nanoparticles. The supramolecularly modified nanoparticles (nHApUPy) exhibited enhanced colloidal stability compared to the original hydroxyapatite nanoparticles and were uniformly dispersed in supramolecular polycaprolactone in PCL(UPy)2/HApUPy nanocomposites at different filler loadings. The combined atomic force microscopy, mechanical, and rheological analyses confirmed a high degree of compatibility of HApUPy nanoparticles with the polymer matrix. The temperature dependence of the supramolecular structure in PCL(UPy)2/HApUPy... 

    Surface modification for titanium implants by hydroxyapatite nanocomposite

    , Article Caspian Journal of Internal Medicine ; Volume 3, Issue 3 , 2012 , Pages 460-465 ; 20086164 (ISSN) Family, R ; Solati Hashjin, M ; Nik, S. N ; Nemati, A ; Sharif University of Technology
    2012
    Abstract
    Background: Titanium (Ti) implants are commonly coated with hydroxyapatite (HA). However, HA has some disadvantages such as brittleness, low tensile strength and fracture toughness. It is desirable to combine the excellent mechanical properties of ZrO 2 and the chemical inertness of Al 2O 3 with respect to the purpose of this project which was coating Ti implants with HA-ZrO 2-Al 2O 3 to modify the surface of these implants by adding ZrO 2 and Al 2O 3 to HA. The purpose of this study was to evaluate the efficacy of hydroxyapatite coating nonocomposite. Methods: From September 2009 to January2011, functionally graded HA-Al 2O 3-ZrO 2 and HA coatings were applied on Ti samples. HA-Al 2O 3-ZrO... 

    Study of cemented carbonitrides with nickel as binder: Experimental investigations and computer calculations

    , Article International Journal of Refractory Metals and Hard Materials ; Volume 31 , 2012 , Pages 164-170 ; 02634368 (ISSN) Mohammadpour, M ; Abachi, P ; Parvin, N ; Pourazrang, K ; Sharif University of Technology
    2012
    Abstract
    Cobalt is the most common binder in cemented carbides industry. However, there are some interests in use of alternatives. The similarity in properties has made nickel the first choice. In the present work, the effect of initial composition on modern hardmetals containing transition metal carbides/carbonitrides that are called "cemented carbonitrides" with nickel as binder was investigated. Change in quantity of additive carbides and tungsten to carbon (C/W) weight ratio through applying metallic tungsten powder in primary powder mixture had some effects on final hardness, transverse rupture strength, and microstructure of studied alloys. Addition of vanadium carbide not more than 0.2 wt.%,... 

    Effect of cobalt replacement by nickel on functionally graded cemented carbonitrides

    , Article International Journal of Refractory Metals and Hard Materials ; Volume 30, Issue 1 , January , 2012 , Pages 42-47 ; 02634368 (ISSN) Mohammadpour, M ; Abachi, P ; Pourazarang, K ; Sharif University of Technology
    2012
    Abstract
    Functionally graded cemented carbonitrides (FGCCs) are applied in cutting tools industry. Indexable inserts made from mentioned alloys have superior cutting performance and tool life thanks the formation of a surface modified layer with enhanced properties as well as crater wear resistance. Cemented carbonitrides are made of hard carbide/nitride/carbonitride particles that have been embedded in a metallic binder. Excellent wetting ability of tungsten carbide with cobalt has made this metal the first choice as binder. However, cobalt has high cost and environmental pollution impacts. Substitution of cobalt with other metals has always been figured out. Some other metals that have been used as... 

    Surface chemistry of atmospheric plasma modified polycarbonate substrates

    , Article Applied Surface Science ; Volume 257, Issue 23 , September , 2011 , Pages 9836-9839 ; 01694332 (ISSN) Yaghoubi, H ; Taghavinia, N ; Sharif University of Technology
    2011
    Abstract
    Surface of polycarbonate substrates were activated by atmospheric plasma torch using different gas pressure, distance from the substrates, velocity of the torch and number of treatments. The modifications were analyzed by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Plasma treatment caused the surface characteristics to become more hydrophilic as measured by the water contact angle, which decreased from 88° to 18°. The decrease in contact angle was mainly due to oxidation of the surface groups, leading to formation of polar groups with hydrophilic property. XPS results showed an increase in the intensity of... 

    Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy

    , Article Advanced Drug Delivery Reviews ; Volume 63, Issue 1-2 , January–February , 2011 , Pages 24-46 ; 0169409X (ISSN) Mahmoudi, M ; Sant, S ; Wang, B ; Laurent, S ; Sen, T ; Sharif University of Technology
    2011
    Abstract
    At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. More specifically for drug delivery purposes, the use of nanoparticles is attracting increasing attention due to their unique capabilities and their negligible side effects not only in cancer therapy but also in the treatment of other ailments. Among all types of nanoparticles, biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) with proper surface architecture and conjugated targeting ligands/proteins have attracted a great deal of attention for drug delivery applications. This review covers recent advances in the development of SPIONs together... 

    Surface Modification of Polysulfone Membrane by Plasma Treatment for CO2/CH4 Separation

    , M.Sc. Thesis Sharif University of Technology Modarresi, Siamak (Author) ; Soltanieh, Mohammad (Supervisor)
    Abstract
    Low frequency (LF) O2 plasma was used to modify the surface of polysulfone (PSF) gas separation membranes. The effect of treatment time and plasma power input on the membranes was also investigated. Pure CO2 and CH4 gas permeation measurements were performed before and after plasma treatment. The results showed the increase of permeability of the treated membranes due to surface ablation and surface polarization. However, the CO2/CH4 permselectivity of the treated membranes varied from 7.7 to 45.3 depending on the treatment conditions. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy determined the introduction of oxygen containing polar groups on the surface... 

    Surface Modification of Polyethersulfone Membrane by Plasma Treatment for Gas Separation

    , M.Sc. Thesis Sharif University of Technology Dehghani Kiadehi, Atena (Author) ; Soltanieh, Mohammad (Supervisor)
    Abstract
    In this study, the effects of treatment time and power of Low-frequency (LF) O2 plasma has been investigated for the surface treatment of polyethersulfone (PES) gas separation membranes. PES membranes prepared using dry/wet phase inversion using ternary mixtures containing 1-methyl-2-pyrrolidone (NMP) as solvent, water as non-solvent. The optimum polymer concentration was 32 wt.% , 61 wt.% and 7 wt.% for PES,1-methyl-2-pyrrolidone and water respectively. Pure CO2 and CH4 gas permeation measurements were performed before and after plasma treatment. After treatment gas permeances of around 0.81 GPU for CO2, and 0.073 GPU for CH4 with selectivities of around 11.23 for CO2/CH4 were obtained.... 

    Surface Modification of Hemodialysis Membrane for Enhancement of Their Performance

    , M.Sc. Thesis Sharif University of Technology Noori Gooshki, Mahdiyeh (Author) ; MoosavI, Abbas (Supervisor) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    A new technique for surface modification of flat sheet hemodialysis membranes has been investigated. This new strategy presents a dynamic surface modification for membranes in order to assess the hydrophilicity, antifouling, and biocompatibility effects of two functional monomers on dialysis membrane. PSF membranes containing polyvinylpyrrolidone were prepared via phase inversion technique. Afterward, free radical polymerization combined with surface polymerization used to introduce acrylic acid and 2-hydroxyethyl methacrylate onto polysulfone membrane surface. Various monomer concentrations were selected to obtain an optimum condition. Field emission scanning electron microscope (FE-SEM),... 

    Specific targeting delivery to MUC1 overexpressing tumors by albumin-chitosan nanoparticles conjugated to DNA aptamer

    , Article International Journal of Pharmaceutics ; Volume 515, Issue 1-2 , 2016 , Pages 607-615 ; 03785173 (ISSN) Esfandyari Manesh, M ; Mohammadi, A ; Atyabi, F ; Nabavi, S. M ; Ebrahimi, S. M ; Shahmoradi, E ; Shiri Varnamkhasti, B ; Ghahremani, M. H ; Dinarvand, R ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    Chitosan-coated human serum albumin nanoparticles were functionalized by MUC1 aptamer to obtain a selective drug carrier toward cancers overexpressing MUC1. The negative charges of albumin nanoparticles were shifted to positive charges by surface modification with chitosan, and MUC1 was conjugated through an acrylate spacer. The cytotoxicity of targeted nanoparticles was significantly more than non-aptamer nanoparticles, and also the chitosan-coated nanoparticles had more cytotoxic effects than the negatively charged albumin nanoparticles. The IC50 of targeted nanoparticles was 28 and 26% of free paclitaxel in MCF7 and T47D cells at 48 h, respectively. Confocal laser scanning electron... 

    Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    , Article Journal of Nanoparticle Research ; Volume 18, Issue 9 , 2016 ; 13880764 (ISSN) Behzadi, A ; Mohammadi, A ; Sharif University of Technology
    Springer Netherlands 
    Abstract
    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at... 

    Effect of CO2-laser irradiation on properties and performance of thin-film composite polyamide reverse osmosis membrane

    , Article Korean Journal of Chemical Engineering ; Volume 33, Issue 3 , 2016 , Pages 1028-1036 ; 02561115 (ISSN) Jahangiri, F ; Mousavi, S. A ; Farhadi, F ; Vatanpour, V ; Sabzi, B ; Chenari, Z ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    CO2-laser irradiation was used to modify the surface properties of thin-film composite (TFC) polyamide reverse osmosis (RO) membranes. These membranes were first synthesized via interfacial polymerization of m-phenylenediamine (MPD) monomers and trimesoyl chloride (TMC) over porous polysulfone ultrafiltration support, followed by a CO2-irradiation. AFM, ATR-FTIR, SEM and contact angle measurements were used to characterize the surface properties of these membranes. The ATR-FTIR results indicated that CO2-laser irradiation did not induce any functional groups on the membrane surface. However, it was found that the laser irradiation enhanced the NaCl salt rejection and slightly reduced the... 

    Adsorption of Heavy Metals and Various Pollution from Aqueous Solutions by Vegetable Residues

    , M.Sc. Thesis Sharif University of Technology Mohebali, Sanaz (Author) ; Bastani, Dariush (Supervisor) ; Seif-Kordi, Ali Akbar (Supervisor)
    Abstract
    Celery residue modified with H2SO4 was utilized as a low-cost adsorbent for removal of hazardous dyes (methylene blue, malachite green and congo red) and heavy metals (Pb(II) and Cd(II)) from aqueous solution in batch adsorption process. Also, celery residue modified with cationic surfactant (CTAB) to enhance the removal of congo red (anionic dye). The treated and untreated adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). The efficacy of dye removal of the modified celery residue was investigated by varying adsorbent dose, contact time, pH, initial dye concentration, and temperature. Experimental data were fitted by three... 

    In vitro biological outcome of laser application for modification or processing of titanium dental implants

    , Article Lasers in Medical Science ; Volume 32, Issue 5 , 2017 , Pages 1197-1206 ; 02688921 (ISSN) Hindy, A ; Farahmand, F ; Tabatabaei, F. S ; Sharif University of Technology
    Abstract
    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords “titanium dental implants,” “laser,” “biocompatibility,” and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium... 

    Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review

    , Article Desalination ; Volume 420 , 2017 , Pages 330-383 ; 00119164 (ISSN) Asadollahi, M ; Bastani, D ; Musavi, S. A ; Sharif University of Technology
    Abstract
    Reverse osmosis (RO) membrane process has become the most promising technology for desalination to produce purified water. Among numerous polymeric materials used to fabricate RO membranes, aromatic polyamide thin film composite (TFC) membranes are dominant in commercial RO membrane processes because of their high salt rejection and water permeability as well as their excellent chemical, thermal, and mechanical stability. However, the major hindrance to the effective application of polyamide TFC RO membranes is membrane fouling. Furthermore, polyamide TFC RO membranes have limited stability to chlorine, which is commonly used as disinfect to control membrane biofouling. These two factors... 

    Free radical graft polymerization of 2-hydroxyethyl methacrylate and acrylic acid on the polysulfone membrane surface through circulation of reaction media to improve its performance and hemocompatibility properties

    , Article Journal of Membrane Science ; Volume 564 , 2018 , Pages 762-772 ; 03767388 (ISSN) Nouri Goushki, M ; Mousavi, S. A ; Abdekhodaie, M. J ; Sadeghi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this study, a new facile and cost effective method is used to modify polysulfone membrane surface in order to improve the hydrophilicity, antifouling, and blood compatibility. This modification was performed by adding two functional monomers on the dialysis membrane. Polysulfone (PSF) membranes containing polyvinylpyrrolidone were prepared via phase inversion technique. In the next step, free radical polymerization combined with surface polymerization was used to introduce acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) onto the polysulfone membrane surface via circulation of initiator and monomer solutions across the membrane surface, respectively. Various monomer concentrations... 

    The Role of Surface Functionalization of Nanodiamond on the Vulcanization Kinetics and Network Structure of SBR

    , M.Sc. Thesis Sharif University of Technology Mirzai Alamuti, Zoleikha (Author) ; Shojaie, Akbar (Supervisor)
    Abstract
    Elastomers are flexible polymers with various uses in different industries. But this materials dont havevalid usages without correct fillers. Today Nano technology has a main role in the industry. one of the important reasons is rubber quality improvement with adding just a little amount of this clays, opposite to Carbon Black. To achieve a high quality polymer composite, it is necessary to learn about physical and mechanical properties of nano clays and the interaction between Nano clays and matrix. Because of the effect of nano clays on vulcanization, this issue is noticeable . Nano diamond is a nanoclay used to improve rubber quality. But this method is new because of the complicated... 

    Preparation and Characterization of Inhibitor Loaded Nanodiamond for Anticorrosion Coating

    , M.Sc. Thesis Sharif University of Technology Rahmani, Pooria (Author) ; Shojaei, Akbar (Supervisor) ; Pirhadi, Nahid (Co-Supervisor)
    Abstract
    In recent years, nanodiamond (ND) has been used as reinforcement in polymeric nanocomposites in order to improve mechanical properties, thermal conductivity, etc. The surface of nanodiamond has several functional groups which make it appropriate adsorbent. In this study, nanodiamond was modified with dodecylamine corrosion inhibitor and was utilized (1wt %) in epoxy based nanocomposite. Fourier transform infrared spectroscopy (FTIR) analysis was used to confirm the surface modification of Nanodiamond. In order to estimate the loading amount of corrosion inhibitor, thermogravimetric analysis was investigated. FE-SEM analysis demonstrated nanoparticle dispersibility in epoxy matrix. Regarding... 

    Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform

    , Article Biosensors and Bioelectronics ; Volume 112 , 2018 , Pages 100-107 ; 09565663 (ISSN) Shahrokhian, S ; Khaki Sanati, E ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The direct growth of self-supported metal-organic frameworks (MOFs) thin film can be considered as an effective strategy for fabrication of the advanced modified electrodes in sensors and biosensor applications. However, most of the fabricated MOFs-based sensors suffer from some drawbacks such as time consuming for synthesis of MOF and electrode making, need of a binder or an additive layer, need of expensive equipment and use of hazardous solvents. Here, a novel free-standing MOFs-based modified electrode was fabricated by the rapid direct growth of MOFs on the surface of the glassy carbon electrode (GCE). In this method, direct growth of MOFs was occurred by the formation of vertically...