Loading...
Search for: synthesis-and-characterizations
0.005 seconds
Total 57 records

    Synthesis and characterization of poly(methacrylates) containing spiroacetal and norbornene moieties in side chain [electronic resource]

    , Article Journal of Applied Polymer Science ; Volume 77, Issue 1, pages 30–38, 5 July 2000 Pourdjavadi, A. (Ali) ; Mirjalili, Bibi Fatemeh ; Sharif University of Technology
    Abstract
    A four-step synthetic strategy was applied to achieve novel methacrylic monomers. 5-Norbornene-2,2-dimethanol was prepared from a Diels–Alder reaction of cyclopentadiene and acrolein, followed by the treatment of the adduct with an HCHO/KOH/MeOH solution. The resulting 1,3-diol (1) was then acetalized with different aromatic aldehydes having OH groups on the ring to produce four spiroacetal derivatives. The reaction of methacryloyl chloride with the phenolic derivatives led to four new methacrylic monomers that were identified spectrochemically (mass, FTIR, 1H-NMR, and 13C-NMR spectroscopy). Free radical solution polymerization was used to prepare novel spiroacetal–norbornene containing... 

    Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate

    , Article Materials Science and Engineering C ; Vol. 42 , 2014 , pp. 763-773 ; ISSN: 09284931 Alishiri, M ; Shojaei, A ; Abdekhodaie, M. J ; Yeganeh, H ; Sharif University of Technology
    Abstract
    A series of biodegradable acrylic terminated polyurethanes (APUs) based on poly(ε-caprolactone) diol (PCL), aliphatic 1,6-hexamethylene diisocyanate (HDI) and hydroxyethyl methyl acrylate (HEMA) was synthesized as potential materials for hard tissue biomedical applications. PCLs with low molecular weights of 1000 and 2000 g/mol were employed to provide different amounts of end capped urethane acrylate in APUs. To control crosslink density, a mixture of two different reactive diluents including mono-functional HEMA and bi-functional ethylene glycol dimethacrylate (EGDMA) with different weight ratios was incorporated into the APUs, called here PUAs. Morphological characteristics and mechanical... 

    Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol

    , Article Materials Science and Engineering C ; Vol. 42 , 2014 , pp. 341-349 ; ISSN: 09284931 Ganji, Y ; Kasra,M ; Salahshour Kordestani, S ; Bagheri Hariri, M ; Sharif University of Technology
    Abstract
    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell... 

    Synthesis and characterization of pure metallic titanium nanoparticles by an electromagnetic levitation melting gas condensation method

    , Article RSC Advances ; Vol. 4, issue. 14 , 2014 , pp. 7104-7108 ; ISSN: 20462069 Mohammadi, A. V ; Halali, M ; Sharif University of Technology
    Abstract
    Pure titanium nanoparticles were synthesized by utilizing an Electromagnetic Levitation Melting Gas Condensation (ELM-GC) method. Pure bulk titanium samples were melted and evaporated by electromagnetic levitation technique in an inert gas atmosphere in a silica tube. Titanium nanoparticles were formed from ascending vapor by employing high purity argon and helium as carrier gases and cooling agents. Particle size and morphology of the produced nanoparticles were studied by Field-Emission Scanning Electron Microscopy (FE-SEM) and Dynamic Light Scattering (DLS) analysis. Results showed almost spherical nanoparticles with a narrow size distribution under both cooling atmospheres. The purity of... 

    Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes

    , Article Journal of Solid State Electrochemistry ; Vol. 19, Issue. 1 , 2014 , pp. 269-274 ; ISSN: 1432-8488 Jokar, E ; Zad, A. I ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    Here, a solvothermal method for synthesis of porous Ni–Co binary oxide (NiCo2O4) nanorods followed by thermal decomposition is described. The prepared nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer Emmett Teller (BET) methods. These porous NiCo2O4 nanostructures were promising candidates in the development of high capacity supercapacitors and having excellent cycling performance due to high specific surface area. In addition, the influence of annealing rate on the structure and electrochemical behavior of the synthesized nanorods was investigated. The results showed that the annealing rate had a direct effect on the crystalline... 

    Synthesis and characterization of co-doped TiO2 thin films on glass-ceramic

    , Article Materials Science in Semiconductor Processing ; Vol. 26, Issue 1 , October , 2014 , pp. 41-48 ; ISSN: 13698001 Ahmadi, N ; Nemati, A ; Solati-Hashjin, M ; Sharif University of Technology
    Abstract
    In this research, an attempt was made to improve TiO2 photo-catalyst properties, thus pure, N-Ce co-doped TiO2 thin films were prepared on glass-ceramic substrate using a sol-gel dip-coating technique. The samples were calcinated in air at 475 °C, 550°C, and 650°C for 2 h. The result of simultaneous thermal analysis (STA) and X-ray diffraction (XRD) showed that the presence of Ce in TiO2 could inhibit the phase transformation from anatase to rutile and enhance the thermal stability, and anatase was the dominant phase in N-Ce co-doped TiO2 samples. Also based on the results, the doping results in decreasing the size of TiO 2 crystallite. The results of ultra violet-visible light diffuse... 

    Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents

    , Article Materials Research Bulletin ; Vol. 61, issue , January , 2014 , p. 70-75 Moazeni, M ; Hajipour, H ; Askari, M ; Nusheh, M ; Sharif University of Technology
    Abstract
    The ion exchange process is a promising method for lithium extraction from brine and seawater having low concentrations of this element. To achieve this goal, it is vital to use an effective adsorbent with maximum lithium adsorption potential together with a stable structure during extraction and insertion of the ions. In this study, titanium dioxide and then lithium titanate spinel with nanotube morphology was synthesized via a simple two-step hydrothermal process. The produced Li4Ti5O12 spinel ternary oxide nanotube with about 70 nm diameter was then treated with dilute acidic solution in order to prepare an adsorbent suitable for lithium adsorption from local brine. Morphological and... 

    Synthesis and characterization of salep sulfate and its utilization in preparation of heavy metal ion adsorbent

    , Article Journal of Applied Polymer Science ; Volume 130, Issue 4 , 2013 , Pages 3001-3008 ; 00218995 (ISSN) Pourjavadi, A ; Doulabi, M ; Alamolhoda, A. A ; Tavakkoli, E ; Amirshekari, S ; Sharif University of Technology
    2013
    Abstract
    A multicomponent polysaccharide obtained from dried tubers of certain natural terrestrial orchids was chemically modified by sulfonation using chlorosulfonic acid-dimethylformamide (HClSO3-DMF) complex as a reagent. For a structural characterization of salep sulfate 1H nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectra, and Thermogravimetric analysis (TGA) curves were recorded. The sulfate content of modified salep was determined using elemental analysis. This modified biopolymer was used to prepare a new environment-friendly heavy metal ion adsorbent, salep sulfate-graft-polyacrylic acid hydrogel (SS-g-PAA). Swelling rate and equilibrium water absorbency in various... 

    Synthesis and characterization of TiO2-graphene nanocomposites modified with noble metals as a photocatalyst for degradation of pollutants

    , Article Applied Catalysis A: General ; Volume 462-463 , 2013 , Pages 82-90 ; 0926860X (ISSN) Ghasemi, S ; Esfandiar, A ; Rahman Setayesh, S ; Habibi Yangjeh, A ; Iraji Zad, A ; Gholami, M. R ; Sharif University of Technology
    2013
    Abstract
    TiO2-graphene (TiO2-GR) nanocomposites were synthesized using photocatalytic reduction method. TiO2-GR nanocomposites were thereafter doped with noble metals (Pt and Pd) by chemical reduction of the corresponding cations. The samples were characterized by different techniques. The addition of GR to TiO2 decreases the crystalline size of TiO2 due to the homogeneous dispersion of the TiO2 nanoparticles on GR sheets and prevention of coagulation of TiO2 nanoparticles during synthesis process. In addition, the surface area of TiO2 was increased by addition of GR and deposition of noble metals which helps to prevent agglomeration of graphene sheets and TiO 2 nanoparticles. Red shifts to the... 

    Synthesis and characterization of bioactive glass/forsterite nanocomposites for bone and dental implants

    , Article Ceramics - Silikaty ; Volume 56, Issue 4 , 2012 , Pages 331-340 ; 08625468 (ISSN) Kamalian, R ; Yazdanpanah, A ; Moztarzadeh, F ; Ravarian, R ; Moztarzadeh, Z ; Tahmasbi, M ; Mozafari, M ; Sharif University of Technology
    2012
    Abstract
    In this research, bioactive glass (BG) of the type CaO-P2O 5-SiO2 and nanocrystalline forsterite (NF) bioceramic were successfully synthesized via sol-gel processing method. Heat-treatment process was done to obtain phase-pure nanopowders. After characterization of each sample, the nanocomposite samples were prepared by cold pressing method and sintered at 1000°C. The samples were fully characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) analyses. The average nanocrystallite size was determined using the Debye-Scherrer's formula 19.6 nm. The bioactivity was examined in vitro... 

    Synthesis and characterization of Al-SiC nanocomposites produced by mechanical milling and sintering

    , Article Advanced Composite Materials ; Volume 20, Issue 1 , 2011 , Pages 13-27 ; 09243046 (ISSN) Kamrani, S ; Razavi Hesabi, Z ; Riedel, R ; Seyed Reihani, S. M ; Sharif University of Technology
    Abstract
    Aluminum powder and various volume fractions of SiC particles with an average diameter of 50 nm were milled by a high-energy planetary ball mill to produce nanocrystalline Al-SiC nanocomposite powders. Double pressing/sintering process was used to consolidate powders to cylindrical specimens. It was shown that a double cycle of cold pressing and sintering can be utilized to obtain high density Al-SiC nanocomposite parts without using a hot-working step. High resolution scanning electron microscopy (HRSEM), X-ray diffraction (XRD) and laser particle size analyzer (PSA) were used to study the morphological and microstructural evolution of nanocomposite powders and bulk samples. The role of... 

    Synthesis and characterization of semi-conductive nanocomposite based on hydrolyzed collagen and in vitro electrically controlled drug release study

    , Article Polymer (United Kingdom) ; Volume 76 , October , 2015 , Pages 287-294 ; 00323861 (ISSN) Pourjavadi, A ; Doroudian, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this study, a semi-conductive nanocomposite for electrically controlled drug delivery is introduced. Hydrolyzed collagen known as a naturally abundant polypeptide was modified with polycaprolactone. This modification changed the mechanical properties of the hydrolyzed-collagen. A hydrogel compound was synthesized through radical co-polymerization of acrylic acid on the backbone of this biocompatible polymer in the presence of a crosslinker. The reaction parameters affecting the water absorbency of the hydrogel were optimized using Taguchi method. In situ polymerization of aniline, incorporated conductive nanofiber pathways throughout the hydrogel matrix. 1H NMR, TGA, AFM, SEM, FTIR,... 

    Supercritical synthesis and characterization of graphene-pbs quantum dots composite with enhanced photovoltaic properties

    , Article Industrial and Engineering Chemistry Research ; Volume 54, Issue 30 , 2015 , Pages 7382-7392 ; 08885885 (ISSN) Tayyebi, A ; Tavakoli, M. M ; Outokesh, M ; Shafiekhani, A ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    Lead sulfide quantum dots (PbS QDs) were decorated onto a graphene surface in a semi-core-shell structure using supercritical ethanol. The temperature of ethanol played significant role in controlling size and agglomeration of QDs as well as the extent of reduction of graphene. Average size of the QDs was estimated by transmission electron microscopy to be around 3.96 nm and by quantum models to be about 4.34 nm. PbS QDs prepared at 330 °C were of high purity, and the yield was 99%. Instrumental and chemical analyses demonstrated formation of a strong bond between PbS QDs and graphene, through a Pb-O-C bridge. UV and photoluminescence measurements along with theoretical considerations... 

    Synthesis and characterization of ultrasound assisted "graphene oxide-magnetite" hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions

    , Article Applied Surface Science ; Volume 353 , 2015 , Pages 350-362 ; 01694332 (ISSN) Tayyebi, A ; Outokesh, M ; Moradi, S ; Doram, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Magnetite nanoparticles with a size distribution of 15-21 nm were synthesized and decorated onto surface of graphene oxide by ultrasound assisted precipitation. Size and size distribution of the obtained M-GO hybrid were appreciably finer than the hybrids prepared by stirring method. M-GO is a superparamagnetic material with saturation magnetization of 31 emu g-1. The Langevin equation was successfully applied for estimation of size of Fe3O4 nanoparticles in M-GO hybrid, with maximum error of 17.5%. The study put forward a formation mechanism for M-GO, based on instrumental analyses. Adsorption isotherms of Sr2+ and Co2+ ions, which were fitted by Langmuir monolayer... 

    Synthesis and characterization of electrochemically grown CdSe nanowires with enhanced photoconductivity

    , Article Journal of Materials Science: Materials in Electronics ; Volume 26, Issue 3 , March , 2015 , Pages 1395-1402 ; 09574522 (ISSN) Kalhori, H ; Irajizad, A ; Azarian, A ; Ashiri, R ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    CdSe nanowires were grown in polycarbonate track etched membrane with pore diameter of 80 nm by an electrochemical deposition technique. The mechanism of the growth was studied during the potentiostatic deposition of nanowires. X-ray photoelectron spectroscopy and energy dispersive spectrometry results showed binding of fragments and fraction of atoms for the CdSe nanowires. Microstructure and morphology of synthesized CdSe nanowires were observed by scanning electron microscopy. Optical spectrophotometry technique was used to determine the energy band gap of CdSe nanowires. It was found that the nanowires were resistive in the dark and exhibited a pronounced visible light photoconductivity.... 

    Synthesis and characterization of novel 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo dodecane based nanopolymer-bonded explosives by microemulsion

    , Article Journal of Molecular Liquids ; Volume 206 , June , 2015 , Pages 190-194 ; 01677322 (ISSN) Bayat, Y ; Soleyman, R ; Zarandi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo dodecane (CL-20)-based polymer/plastic bonded explosives are used in propellant formulation. It can be predicted that CL-20-based nano-polymer/plastic bonded explosives are able to have reduced composite sensitivity and superior mechanical strength. In the current study, we have prepared two kinds of CL-20-based nano-polymer/plastic bonded explosives with ethylene-vinyl acetate copolymer and glycidyl azide polymer via the microemulsion method. Several visual techniques such as SEM/AFM/TEM techniques have been utilized for complete characterization of CL-20-based... 

    Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents

    , Article Materials Research Bulletin ; Volume 61 , 2015 , Pages 70-75 ; 00255408 (ISSN) Moazeni, M ; Hajipour, H ; Askari, M ; Nusheh, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The ion exchange process is a promising method for lithium extraction from brine and seawater having low concentrations of this element. To achieve this goal, it is vital to use an effective adsorbent with maximum lithium adsorption potential together with a stable structure during extraction and insertion of the ions. In this study, titanium dioxide and then lithium titanate spinel with nanotube morphology was synthesized via a simple two-step hydrothermal process. The produced Li4Ti5O12 spinel ternary oxide nanotube with about 70 nm diameter was then treated with dilute acidic solution in order to prepare an adsorbent suitable for lithium adsorption from local brine. Morphological and... 

    Synthesis and characterization of nanocrystalline barium strontium titanate

    , Article Materials Science- Poland ; Volume 28, Issue 2 , 2010 , Pages 421-426 ; 01371339 (ISSN) Golmohammad, M ; Nemati, Z. A ; Faghihi Sani, M. A ; Sharif University of Technology
    2010
    Abstract
    Barium strontium titanate (BST) was prepared via the simple sol-gel method by using tetrabutyl ti-tanate, ethanol, citric acid and ethylene glycol as starting materials. Thermogravimetry and differential thermal analysis were used to examine the behaviour of the xerogel. The particle size of BST was approximately 21 nm, as calculated by the X-ray diffraction and confirmed by transition electron microscopy for the calcination temperature of 750 °C. It was found that the particles of BST powders calcined at 750 °C were smaller and more homogeneous and uniform than those obtained at 800 °C  

    Synthesis and characterization of LiNiO2 nanopowder with various chelating agents

    , Article Journal of Nanomaterials ; Volume 2010 , March , 2010 ; 16874110 (ISSN) Balandeh, M ; Asgari, S ; Sharif University of Technology
    2010
    Abstract
    LiNiO2 powders were synthesized with acrylic acid, citric acid, oxalic acid, and triethanolamine (TEA) as a chelating agent. Crystallized LiNiO2 was synthesized in air at a calcinations temperature of 500 °C for 12 hours, when the molar ratio of chelating agents to total metal ion (RPM) was 1.0. The TEA-assisted method had the highest intensity ratio of (003)/(104) peaks of X-ray diffraction (XRD) spectrum. The transmission electron microscopy (TEM) analysis indicates that the sample prepared with triethanolamine obtained the smallest particle size with average particle size of only 12nm. The results indicate that chelating agents have an important role in the intensity ratio of (003)/(104)... 

    Synthesis and characterization of MoO3 nanostructures by solution combustion method employing morphology and size control

    , Article Journal of Nanoparticle Research ; Volume 12, Issue 4 , 2010 , Pages 1509-1521 ; 13880764 (ISSN) Parviz, D ; Kazemeini, M ; Rashidi, A. M ; Jafari Jozani, Kh ; Sharif University of Technology
    Abstract
    Molybdenum oxide nanostructures were synthesized utilizing the solution combustion method where the ammonium molybdate powder and an organic additive were used as precursors. Different organic additives including ethylene diamine tetraacetic acid (EDTA), polyethylene glycol 200 (PEG 200), sorbitol and urea were used as surfactants in order to investigate the effect of additive structure on morphology and particle size of products. Also various reaction parameters such as the additive/Mo molar ratio, concentration of metal ion in solution, pH of the reaction, and temperature of the synthesis media were changed to study effects on product morphology and size. Outcomes were characterized by...