Loading...
Search for: tight-binding
0.01 seconds
Total 40 records

    Modeling of Vertical Tunneling Transistor based on Gr-hBN-MoSe2 Heterostructure

    , M.Sc. Thesis Sharif University of Technology Ahmadi Golsaraki, Amir Hossein (Author) ; Faez, Rahim (Supervisor)
    Abstract
    In this thesis, the transmission characteristics of a vertical tunneling transistors based on graphene-hBN-MoSe2 heterostructure is studied. We first obtain the tight-binding parameters required for Hamiltonian matrix and bandstructure calculations using density functional theory results. Once we have the tight-binding parameters, Hamiltonian and coupling matrices are calculated both of size 326×326. We then proceed to calulate the density of stated for source and drain contacts using the aforementioned matrices and nonequilibrium Green’s function(NEGF) formalism. We can then calculate the quantum capacitances of source and drain and acquire source/drain potentials using a capacitive circuit... 

    Simulation and Analysis of Bilayer Graphene FET with Defect

    , M.Sc. Thesis Sharif University of Technology Ghalehkohneh, Ali (Author) ; Faez, Rahim (Supervisor)
    Abstract
    In this thesis, a field-effect transistor using armchair bilayer grapheme nanoribbon as channel material in simulated. In first, electronic property of bilayer graphene and bilayer graphene nanoribbons using tight binding are studied. Transport properties of transistor, sush as transsmition and density of carriers, are studied by self-consistently solving poisson equation and Non-Equilibrium Green’s Function. Finally, I-V characteristics of the transistor can be obtained using the Landauer formula.
    Also, effect of Stone-Wales defect on bandstructure and transmission of armchair bilayer grapheme nanoribbon is investigated. This defect increases energy gap and broadens egergy bands in... 

    Simulation of Graphene Nanoribbon based Photodetector

    , M.Sc. Thesis Sharif University of Technology Faramarzi, Vahid (Author) ; Faez, Rahim (Supervisor)
    Abstract
    In this work, we have simulated graphene nanoribbon based photodetector and impact of changing the width, and Boron-Nitride doping and Stone-Wales defects on the optical properties of GNR has study. The energy band structure of GNR with nearest-neighbor approximation in a tight binding model calculated. To correspond with experiment and accuracy, we need to consider the impact of third nearest neighbors and edge bond relaxation. By Using the band structure, we calculated joint density of state and optical matrix elements and obtain inter band selection rule for A-GNR and Z-GNR. Then, using the Fermi’s golden rule, we investigate optical properties of GNR such as optical conductivity and... 

    Design of Graphene Spintronic Devices

    , M.Sc. Thesis Sharif University of Technology Barami, Soode (Author) ; Faez, Rahim (Supervisor)
    Abstract
    Magnetization have an important role in spintronic devices based on graphene. In this study the effect of stone-wales and vacancy defect on electrical and magnetic properties of zigzag and armchair graphene nanoribbons were investigated. Calculations are performed using tight-binding and hubard model combining with Green's function techniques. When the balance between A and B sub-lattices gets disturbed, magnetization will be appeared. In stone-wales defect we have local magnetization because of changing the position of sub-lattices and the total magnetization is zero. In addition the stone-wales defect can change and modify the band structures and band gaps. Vacancy of carbon atom in... 

    A Simulation Study of Graphene Nanoribbon Field Effect Transistor

    , M.Sc. Thesis Sharif University of Technology Samadi, Mohsen (Author) ; Faez, Rahim (Supervisor)
    Abstract
    In this thesis, a field effect transistor (FET) using armchair graphene nanoribbon as the channel is simulated, and the effects of changing nanoribbon width and length, as well as adding defects, are also studied. To obtain the Hamiltonian matrix and the energy band structure of graphene nanoribbon, tight binding method is used in which the first and third neighbor approximation is considered. Also, to maximize accuracy, we also considered the edge bond reconstruction. To obtain the transport characteristics of the transistor, such as the transmission coefficient and the density of states (DOS), Poisson and Schrodinger equations are solved self-consistently. We used the nonequilibrium... 

    Electrical and Thermal Properties of Thin Films of Perovskites

    , M.Sc. Thesis Sharif University of Technology Nouri, Roya (Author) ; Kargarian, Mehdi (Supervisor)
    Abstract
    In this thesis, we consider a simple layered structure grown along [001] direction. Based on the previous works we show that the energy spectrum contains linear Dirac spectrum of type II tilted in some direction. We also investigate the anomalous transport phenomena in the bilayer structures grown along [111] direction of a class of perovskites. The crystal field splits the d orbitals into two classes dubbed as eg and t2g described by different Hamiltonians within each manifold. An applied magnetic field breaks the time reversal symmetry and we show that the tight-binding bands acquire non-zero Chern numbers underlying the existence of non-trivial band topology in these structures. Again... 

    Construction of Dirac points using triangular supercrystals

    , Article Applied Physics A: Materials Science and Processing ; Volume 115, Issue 2 , May , 2014 , Pages 581-587 ; ISSN: 09478396 Aram, M. H ; Mohajeri, R ; Khorasani, S ; Sharif University of Technology
    Abstract
    We show a methodology for how to construct Dirac points that occur at the corners of Brillouin zone as the Photonic counterparts of graphene. We use a triangular lattice with circular holes on a silicon substrate to create a Coupled Photonic Crystal Resonator Array (CPCRA) which its cavity resonators play the role of carbon atoms in graphene. At first we draw the band structure of our CPCRA using the tight-binding method. For this purpose we first designed a cavity which its resonant frequency is approximately at the middle of the first H-polarization band gap of the basis triangular lattice. Then we obtained dipole modes and magnetic field distribution of this cavity using the Finite... 

    Peculiar transport properties in Z-shaped graphene nanoribbons: A nanoscale NOR gate

    , Article Thin Solid Films ; Volume 548 , 2013 , Pages 443-448 ; 00406090 (ISSN) Khoeini, F ; Khoeini, F ; Shokri, A ; Sharif University of Technology
    2013
    Abstract
    A nanoscale logic NOR gate has been theoretically designed by magnetic flux inputs in a Z-shaped graphene nanoribbon composed of an armchair ribbon device sandwiched between two semi-infinite metallic zigzag ribbon leads. The calculations are based on the tight-binding model and iterative Green's function method, in which the conductance as well as current-voltage characteristics of the nanosystem are calculated, numerically. We show that the current and conductance are highly sensitive to both the magnetic fluxes subject to the device and the size of the system. Our results may have important applications for building blocks in the nanoelectronic devices based on graphene nanoribbons  

    Effect of stone-wales defects on electronic properties of armchair graphene nanoribbons

    , Article 2013 21st Iranian Conference on Electrical Engineering, ICEE 2013 ; 2013 , 14-16 May ; 9781467356343 (ISBN) Samadi, M ; Faez, R ; Sharif University of Technology
    2013
    Abstract
    In this paper, the effects of Stone-Wales (SW) defect on transport properties of armchair graphene nanoribbons (AGNRs) are studied using tight binding calculations combined with nonequilibrium Green's function (NEGF). We evaluate transmission and density of states (DOS) in two cases, pristine and defective AGNR, and we compare the results. Our results indicate that in the latter case, a larger bandgap is made due to symmetry breaking in GNR layer  

    Spin effect on band structure of zigzag and armchair graphene nanoribbones with Stone-Wales defect

    , Article 2013 21st Iranian Conference on Electrical Engineering ; May , 2013 , Page(s): 1 - 4 ; 9781467356343 (ISBN) Faez, R ; Barami, S ; Sharif University of Technology
    2013
    Abstract
    In this paper the band structure of spin polarized zigzag graphene nanoribbons(ZGNRs) and armchair graphene nanoribons(AGNRs) with Stone-Wales defect are investigated. The results show when the spin effect is considered, the band structures of ZGNRs and AGNRs will be changed and modified. A larger gap will be created and the degenerate bands in ZGNRs will become far from each other. Tight-binding and hubard model were used to simulate the band structures  

    Analytical and numerical study of quantum transport in an array of nanorings: A case study with double rings

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 47 , January , 2013 , Pages 297-302 ; 13869477 (ISSN) Khoeini, F ; Khoeini, F ; Sharif University of Technology
    2013
    Abstract
    We present an analytical method to obtain an expression for electron transmission through an array of disordered nanorings (ADNRs) sandwiched between two semi-infinite metallic leads in different lead-ring coupling strengths. Our approach is based on the nearest-neighbor tight-binding approximation and transfer matrix method. First, we derive an analytical formula for electron transmission across the system. Next, we apply our approach to study of the electron transport in a perfect double nanoring (PDNR) and design a NOR gate using the magnetic fluxes inputs. The conductance, current-voltage characteristics and threshold voltage of the system are calculated in the weak and strong coupling... 

    An overview of tight-binding method for two-dimensional carbon structures

    , Article Graphene: Properties, Synthesis and Applications ; 2012 , Pages 1-36 ; 9781614709497 (ISBN) Gharekhanlou, B ; Khorasani, S ; Sharif University of Technology
    2012
    Abstract
    Since the advent of graphene, the two-dimension allotrope of carbon, there has been a growing interest in calculation of quantum mechanical properties of this crystal and its derivatives. To this end, the tight-binding model has been in frequent use for a relatively long period of time. This review, presents an in-depth survey on this method as possible to graphene and two of the most important related structures, graphene anti-dot lattice, and graphane. The two latter derivatives of graphene are semiconducting, while graphane is semimetallic. We present band structure and quantum mechanical orbital calculations and justify the results with the density function theory  

    Electronic features of rippled graphene

    , Article ICEE 2012 - 20th Iranian Conference on Electrical Engineering ; 2012 , Pages 170-172 ; 9781467311489 (ISBN) Haji Nasiri, S ; Moravvej Farshi, M. K ; Faez, R ; Bajelan, A ; Sharif University of Technology
    2012
    Abstract
    Using tight binding theory the effect of topological ripples on the electronic band structure, density of states (DOS), and Fermi velocity of graphene are studied. The results show that by an increase in the ripple height the graphene Fermi velocity decreases and its DOS increases.- Moreover, we show that an increase in the ripple period causes the graphene band gap and DOS to decrease and its Fermi velocity to increase  

    Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons

    , Article Journal of Applied Physics ; Volume 111, Issue 5 , 2012 ; 00218979 (ISSN) Karamitaheri, H ; Neophytou, N ; Pourfath, M ; Faez, R ; Kosina, H ; Sharif University of Technology
    2012
    Abstract
    We theoretically investigate the thermoelectric properties of zigzag graphene nanoribbons in the presence of extended line defects, substrate impurities, and edge roughness along the nanoribbon's length. A nearest-neighbor tight-binding model for the electronic structure and a fourth nearest-neighbor force constant model for the phonon bandstructure are used. For transport, we employ quantum mechanical non-equilibrium Green's function simulations. Starting from the pristine zigzag nanoribbon structure that exhibits very poor thermoelectric performance, we demonstrate how after a series of engineering design steps the performance can be largely enhanced. Our results could be useful in the... 

    Geometrical effects on the thermoelectric properties of ballistic graphene antidot lattices

    , Article Journal of Applied Physics ; Volume 110, Issue 5 , 2011 ; 00218979 (ISSN) Karamitaheri, H ; Pourfath, M ; Faez, R ; Kosina, H ; Sharif University of Technology
    2011
    Abstract
    The thermoelectric properties of graphene-based antidot lattices are theoretically investigated. A third nearest-neighbor tight-binding model and a fourth nearest-neighbor force constant model are employed to study the electronic and phononic band structures of graphene antidot lattices with circular, rectangular, hexagonal, and triangular antidot shapes. Ballistic transport models are used to evaluate transport coefficients. Methods to reduce the thermal conductance and to increase the thermoelectric power factor of such structures are studied. Our results indicate that triangular antidot lattices have the smallest thermal conductance due to longer boundaries and the smallest distance... 

    An investigation of the geometrical effects on the thermal conductivity of graphene antidot lattices

    , Article ECS Transactions, 2 May 2011 through 4 May 2011, Montreal, QC ; Volume 35, Issue 3 , May , 2011 , Pages 185-192 ; 19385862 (ISSN) ; 9781566778640 (ISBN) Karamitaheri, H ; Pourfath, M ; Faez, R ; Kosina, H ; Sharif University of Technology
    2011
    Abstract
    In this work we investigate the thermal conductivity of graphene-based antidot lattices. A third nearest-neighbor tight-binding model and a forth nearest-neighbor force constant model are employed to study the electronic and phononic band structures of graphene-based antidot lattices. Ballistic transport models are used to evaluate the electronic and the thermal conductivities. Methods to reduce the thermal conductivity and to increase the thermoelectric figure of merit of such structures are studied. Our results indicate that triangular antidot lattices have the smallest thermal conductivity due to longer boundaries and the smallest distance between the neighboring dots  

    Improving ION / IOFF and sub-threshold swing in graphene nanoribbon field-effect transistors using single vacancy defects

    , Article Superlattices and Microstructures ; Volume 86 , October , 2015 , Pages 483-492 ; 07496036 (ISSN) Nazari, A ; Faez, R ; Shamloo, H ; Sharif University of Technology
    Academic Press  2015
    Abstract
    Graphene nanoribbon field effect transistors are promising devices for beyond-CMOS nanoelectronics. Graphene is a semiconductor material with zero bandgap and its bandgap must be changed. One of the opening bandgap methods is using graphene nanoribbons. By applying a defect, there is more increase on band gap of monolayer armchair graphene nanoribbon field effect transistor. So, by applying more than one defect, we can reach to much more increase in bandgap of graphene nanoribbon field effect transistors (GNRFET). In this paper, double-gated monolayer armchair graphene nanoribbon field effect transistors (GNRFET) with one single vacancy (1SV) defect (so-called 1SVGNRFET)are simulated and... 

    An exact analysis for the hoop elasticity and pressure-induced twist of CNT-nanovessels and CNT-nanopipes

    , Article Mechanics of Materials ; Volume 82 , 2015 , Pages 47-62A ; 01676636 (ISSN) Delfani, M. R ; Shodja, H. M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Carbon nanotubes (CNTs) with and without end caps may be used for fluid storage and transport, respectively, referred to as CNT-nanovessel and CNT-nanopipe. The determination of the stiffness in the hoop (circumferential) and radial directions, ideal hoop strength, and hoop stress-strain curve of such nanostructures is of particular interest. Due to the proposed viewpoint, a chiral free-standing single-walled CNT (SWCNT) has a natural angle of twist and natural extension along the axis of the tube. For example, for the SWCNT (9,3) with diameter of 0.85 nm and chirality angle of 13.9°, the natural angle of twist per unit length is 1.45×10-3 rad/nm. Previously, only Vercosa et al. (2010) who... 

    A novel graphene nanoribbon field effect transistor with two different gate insulators

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 66 , 2015 , Pages 133-139 ; 13869477 (ISSN) Akbari Eshkalak, M ; Faez, R ; Haji Nasiri, S ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this paper, a novel structure for a dual-gated graphene nanoribbon field-effect transistor (GNRFET) is offered, which combines the advantages of high and low dielectric constants. In the proposed Two Different Insulators GNRFET (TDI-GNRFET), the gate dielectric at the drain side is a material with low dielectric constant to form smaller capacitances, while in the source side, there is a material with high dielectric constant to improve On-current and reduce the leakage current. Simulations are performed based on self-consistent solutions of the Poisson equation coupled with Non-Equilibrium Green's Function (NEGF) formalism in the ballistic regime. We assume a tight-binding Hamiltonian in... 

    analytical calculation of energy levels of mono- and bilayer graphene quantum dots used as light absorber in solar cells

    , Article Applied Physics A: Materials Science and Processing ; Volume 122, Issue 1 , 2016 , Pages 1-8 ; 09478396 (ISSN) Tamandani, S ; Darvish, G ; Faez, R ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    In this paper by solving Dirac equation, we present an analytical solution to calculate energy levels and wave functions of mono- and bilayer graphene quantum dots. By supposing circular quantum dots, we solve Dirac equation and obtain energy levels and band gap with relations in a new closed and practical form. The energy levels are correlated with a radial quantum number and radius of quantum dots. In addition to monolayer quantum dots, AA- and AB-stacked bilayer quantum dots are investigated and their energy levels and band gap are calculated as well. Also, we analyze the influence of the quantum dots size on their energy spectrum. It can be observed that the band gap decreases as quantum...