Loading...
Search for: toufigh--v
0.026 seconds
Total 42 records

    Reliability analysis of rammed earth structures

    , Article Construction and Building Materials ; Volume 127 , 2016 , Pages 884-895 ; 09500618 (ISSN) Kianfar, E ; Toufigh, V ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Rammed earth (RE) structures are widely used for more sustainable and environment-friendly buildings. Due to lack of design standards, the engineering decisions often rely on rule-of-thumb method which may lead to quite conservative or unsafe designs. In this study, load and resistance parameters were treated as random variables in reliability analysis. The reliability index and failure probability of RE structures were evaluated using First-Order-Reliability-Method (FORM) and then compared with Second-Order-Reliability-Method (SORM) and Monte Carlo Sampling method. The analysis was performed based on the different a) load combinations, b) wall geometry, c) material type (unstabilized or... 

    Interface behavior between carbon-fiber polymer and sand

    , Article Journal of Testing and Evaluation ; Volume 44, Issue 1 , 2016 , Pages 385-390 ; 00903973 (ISSN) Toufigh, V ; Ouria, A ; Desai, C. S ; Javid, N ; Toufigh, V ; Saadatmanesh, H ; Sharif University of Technology
    ASTM International  2016
    Abstract
    Interface shear strength between soil and structural materials is dependent on the confining pressure. To increase the confining pressure, different methods of reinforcement and materials, such as carbon-fiber-reinforced polymer (CFRP) can be used. The shear strength of CFRP-improved soil is dependent on the interface properties of the soil and CFRP. The objective of this study is to investigate the interface properties (friction angle and adhesion) of sand and FRP experimentally using the direct shear test apparatus. To increase the surface roughness to improve the interface properties, a layer of sand was placed on saturated carbon fiber during the curing period [spark plasma sintering... 

    Finite element analysis of a CFRP reinforced retaining wall

    , Article Geomechanics and Engineering ; Volume 10, Issue 6 , 2016 , Pages 757-774 ; 2005307X (ISSN) Ouria, A ; Toufigh, V ; Desai, C ; Toufigh, V ; Saadatmanesh, H ; Sharif University of Technology
    Techno Press 
    Abstract
    Soils are usually weak in tension therefore different materials such as geosynthetics are used to address this inadequacy. Worldwide annual consumption of geosynthetics is close to 1000 million m2, and the value of these materials is probably close to US$1500 million. Since the total cost of the construction is at least four or five times the cost of the geosynthetic itself, the impact of these materials on civil engineering construction is very large indeed. Nevertheless, there are several significant problems associated with geosynthetics, such as creep, low modulus of elasticity, and susceptibility to aggressive environment. Carbon fiber reinforced polymer (CFRP) was introduced over two... 

    Experimental and analytical evaluation of rubberized polymer concrete

    , Article Construction and Building Materials ; Volume 155 , 2017 , Pages 495-510 ; 09500618 (ISSN) Jafari, K ; Toufigh, V ; Sharif University of Technology
    Abstract
    Polymer concrete (PC) has been widely used for quick repairing of concrete pavement and structures in recent years. This paper studies the mechanical behavior of the rubberized polymer concrete. Crumb and chipped rubber were used to replace fine and coarse aggregates in PC, respectively. A complete series of destructive tests including impact test, compression and splitting tensile tests and non-destructive methods including ultrasonic test, digital signal processing, electrical conductivity, and microstructure analysis was performed to demonstrate the various potential applications of the rubberized PC. X-ray diffraction (XRD) also provided information regarding the chemical composition and... 

    Behavior of polymer concrete beam/pile confined with CFRP sleeves

    , Article Mechanics of Advanced Materials and Structures ; 2017 , Pages 1-8 ; 15376494 (ISSN) Toufigh, V ; Toufigh, V ; Saadatmanesh, H ; Ahmari, S ; Kabiri, E ; Sharif University of Technology
    Abstract
    This research investigates the flexural behavior of a polymer concrete beam/pile encased with carbon fiber sleeve. The mechanical properties of carbon fiber sleeves in tension and cement and polymer concrete in compression were determined. Polymer concrete beams were tested in flexure to determine the bending moment capacity. Then, the test results were compared to the theoretical model results. Finally, a parametric study was conducted to determine the influence of beam/pile parameters on the capacity of the element. Based on the investigation, carbon fiber sleeve filled with polymer concrete exhibits outstanding structural performance including ductility and bending capacity. © 2017 Taylor... 

    Seismic performance of ribbed bracing system in passive control of structures

    , Article JVC/Journal of Vibration and Control ; Volume 23, Issue 18 , 2017 , Pages 2926-2941 ; 10775463 (ISSN) Arzeytoon, A ; Golafshani, A. A ; Toufigh, V ; Mohammadi, H ; Sharif University of Technology
    Abstract
    In this article, a novel passive control system, ribbed bracing system (RBS), has been proposed to deal with the buckling problem. RBS is a bracing system with a simple mechanism that can be installed in braces as a supplemental part. The behavior of RBS is similar to that of conventional braces under tensile loading. However, under compressive force, it endures an insignificant force and prevents the braces from buckling through length reduction. In addition, seismic damage is concentrated in the bracing system of the structures equipped with RBS, decreasing the dissipated hysteretic energy in other structural members. There are two different mechanisms for RBS: 1) completely-closed RBS... 

    Experimental evaluation of pinned frame equipped with ribbed bracing system

    , Article Journal of Earthquake Engineering ; 2017 , Pages 1-21 ; 13632469 (ISSN) Mohammadi, H ; Toufigh, V ; Golafshani, A. A ; Arzeytoon, A ; Sharif University of Technology
    Abstract
    This study presents the experimental investigation of half-scale, one-story, one-bay pinned frames equipped with a ribbed bracing system (RBS). The RBS is a newly developed passive control system designed to eliminate buckling and enhance the seismic behavior of structures. Here, mechanical models of this bracing system were designed and constructed. Pinned frames equipped with the RBS were cyclically tested. The hysteretic behavior and energy absorbing capacities of the frames were evaluated. Based on the results, the full plastic capacity of the brace was achieved and no buckling occurred. The RBS frame illustrated proper hysteretic behavior and energy dissipation capacity up to 4% story... 

    Performance-based assessment of an innovative braced tube system for tall buildings

    , Article Bulletin of Earthquake Engineering ; 2017 , Pages 1-22 ; 1570761X (ISSN) Mohammadi, H ; Toufigh, V ; Golafshani, A. A ; Arzeytoon, A ; Sharif University of Technology
    Abstract
    In this paper, an innovative seismic lateral force resisting system for tall buildings is introduced. In this system, a novel supplemental part, ribbed bracing system (RBSyst), is attached to Braced Tube System, creating a modified BTS. RBSyst is a supplemental part which is attached to the conventional bracing members to eliminate buckling problem. The behavior of RBSyst under tensile force is similar to that of the conventional braces. However, in compression, it prevents the braces from buckling by length reduction. In order to evaluate the efficiency of this new BTS system by performance-based assessment, two typical 40-story tall buildings with different story modules equipped with this... 

    Interface between tire and pavement

    , Article Journal of Materials in Civil Engineering ; Volume 29, Issue 9 , 2017 ; 08991561 (ISSN) Jafari, K ; Toufigh, V ; Sharif University of Technology
    Abstract
    Sliding friction between a pavement and tire is an important concern in traffic safety. The British pendulum test has been used worldwide to evaluate friction characteristics of pavement surfaces. However, because of considerable differences in apparatus, procedures, and operation, significant variability can occur for evaluations of British pendulum number (BPN). In this investigation, a direct shear test (DST) device is modified and proposed to determine the sliding friction coefficient between tire and pavement surface under dry and wet conditions. Dissipated energy values obtained from DST were compared with evaluations of BPN, and a high correlation was obtained. Tests were done using... 

    A multi-criteria study on rammed earth for low carbon buildings using a novel ANP-GA approach

    , Article Energy and Buildings ; Volume 150 , 2017 , Pages 466-476 ; 03787788 (ISSN) Pakand, M ; Toufigh, V ; Sharif University of Technology
    Abstract
    Nowadays, the growth of energy consumption in buildings is an important topic. Rammed earth (RE) structures have attracted the attention of engineers and contractors in recent years due to their advantages such as sustainability, availability and low embodied energy content. These advantages result in less energy consumption in the life cycle of the RE structures. However, there is a lack of research on the mixture composition of RE materials containing admixtures. This research introduced integrated analytic network process (ANP) and genetic algorithm (GA) methodology to select the optimum mixture of RE material containing cement, expanded polystyrene(EPS), and phase change materials(PCM)... 

    Experimental and numerical studies on ribbed bracing system

    , Article Structural Design of Tall and Special Buildings ; Volume 27, Issue 13 , 2018 ; 15417794 (ISSN) Arzeytoon, A ; Toufigh, V ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Ribbed bracing system (RBS) is an innovative structural system designed to eliminate the buckling of braces and enhance the behavior of structures under seismic loads. In this study, a collaborative performance of 2 RBS devices bracing a frame was assessed numerically and experimentally. In the numerical phase, the collaboration of ribbed braces at various stages of reversal loading was elaborated mathematically and was used for representing the system using finite element modeling. In the next phase, the numerically observed behavior was validated experimentally by conducting cyclic quasistatic tests of the proposed configurations. Two alternative RBS configurations—called completely closed... 

    Probabilistic seismic performance assessment of ribbed bracing systems

    , Article Journal of Constructional Steel Research ; Volume 148 , 2018 , Pages 326-335 ; 0143974X (ISSN) Arzeytoon, A ; Toufigh, V ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This article evaluates the seismic performance of structures equipped with a ribbed bracing system (RBS). RBS uses ribbed faces that freely slide under compression, however, interlock under tensile forces. Two RBS mechanisms; Completely-closed RBS (CC-RBS) and Improved-centering RBS (IC-RBS), were proposed and successfully tested for eliminating compressive buckling of braces. CC-RBS and IC-RBS provide high energy dissipation capacity and small residual story drifts, respectively. Here, these mechanisms were employed for design and modeling of three structures with varying heights. The models were then subjected to incremental dynamic analysis (IDA), and their seismic performance was... 

    Experimental and numerical study on a novel ribbed bracing system

    , Article Advances in Structural Engineering ; Volume 21, Issue 9 , 2018 , Pages 1349-1360 ; 13694332 (ISSN) Golafshani, A. A ; Fallah, S ; Sahafipourfard, M. A ; Arzeytoon, A ; Toufigh, V ; Sharif University of Technology
    SAGE Publications Inc  2018
    Abstract
    In this article, the ribbed bracing system is proposed and evaluated through experimental and numerical studies. Ribbed bracing system is composed of a supplemental part with ribbed interfaces that is attached to a brace member and allows for its free length reduction to prevent the development of compressional forces responsible for buckling of the brace. Ribbed bracing system provides two different mechanisms: completely closed ribbed bracing system and improved-centering ribbed bracing system which are validated, in this study, through design, fabrication, and testing of small-scale specimens subjected to cyclic quasi-static loading. As verified by the test results, in improved-centering... 

    Experimental and analytical evaluation of FRPs bonded to masonry-long term

    , Article Surface and Coatings Technology ; Volume 344 , 25 June , 2018 , Pages 729-741 ; 02578972 (ISSN) Yarigarravesh, M ; Toufigh, V ; Mofid, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This research investigated the long-term environmental effects on the bond at the interface between fiber-reinforced polymer (FRP) and a masonry brick. Seven types of FRP fabrics were used and placed on the masonry brick using the wet lay-up technique. Unidirectional and bidirectional fibers made of aramid, carbon, and glass and also combination of these fabrics were used. A total of 525 specimens were exposed to five chemical solutions with pH values of 2.5, 7, 10, 12.5 and substitution sea water for 1, 3, 6, 9 and 12 months. A chamber was also used to simulate the ultraviolent (UV) radiation on the specimens. A series of single-lap shear tests were performed on these specimens to determine... 

    A simple model for various types of concretes and confinement conditions based on disturbed state concept

    , Article Scientia Iranica ; Volume 25, Issue 2A , 2018 , Pages 557-564 ; 10263098 (ISSN) Hosseinali, M ; Toufigh, V ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    Concrete is widely used for many practices in Civil Engineering. Therefore, an understanding of its behavior helps engineers and researchers to perform more accurate and cost-effective analyses and designs. In this respect, several models have been proposed to predict the behaviors of concrete most of which are satisfactorily accurate. However, by increasing the accuracy of the models, their computational cost increases, too. In this study, a model with the least computational cost is proposed to predict the behaviors of various concretes and confinement conditions. This model does not require any experimental tests to determine its parameters. It was proved to be able to predict the... 

    A plasticity-based constitutive model for the behavior of soil-structure interfaces under cyclic loading

    , Article Transportation Geotechnics ; Volume 14 , 2018 , Pages 41-51 ; 22143912 (ISSN) Hosseinali, M ; Toufigh, V ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, a new plasticity-based constitutive model is proposed for the behavior of soil-structure interfaces under monotonic and cyclic loadings. The features of the interface including the strain-softening behavior, phase transformation, steady-state, and dilatancy behavior were described by the proposed model with satisfactory accuracy. The proposed model does not require additional concepts such as damage or disturbance, and the model parameters can be obtained easily using straight-forward analyses of the results obtained from constant normal stress tests. Moreover, the results of the proposed model showed its capability in predicting the experimental results obtained from various... 

    Performance-based assessment of an innovative braced tube system for tall buildings

    , Article Bulletin of Earthquake Engineering ; Volume 16, Issue 2 , February , 2018 , Pages 731-752 ; 1570761X (ISSN) Mohammadi, H ; Toufigh, V ; Golafshani, A. A ; Arzeytoon, A ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    In this paper, an innovative seismic lateral force resisting system for tall buildings is introduced. In this system, a novel supplemental part, ribbed bracing system (RBSyst), is attached to Braced Tube System, creating a modified BTS. RBSyst is a supplemental part which is attached to the conventional bracing members to eliminate buckling problem. The behavior of RBSyst under tensile force is similar to that of the conventional braces. However, in compression, it prevents the braces from buckling by length reduction. In order to evaluate the efficiency of this new BTS system by performance- based assessment, two typical 40-story tall buildings with different story modules equipped with... 

    Environmental effects on the bond at the interface between FRP and wood

    , Article European Journal of Wood and Wood Products ; Volume 76, Issue 1 , 2018 , Pages 163-174 ; 00183768 (ISSN) Yarigarravesh, M ; Toufigh, V ; Mofid, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The advantages of fiber reinforced polymer (FRP), such as high specific strength, resistance against corrosion and formability, have made it a more acceptable alternative to conventional materials regarding repairing and retrofitting of structures. Although investigations in recent years have proved the concern of civil engineers about the environmental effects on the bond between FRP and concrete or masonry (especially moisture and temperature), only few researches have been reported on FRP-wood interfaces. This research investigated the effect of five different environments on the bond at the interface between FRP and wood. A series of pull-out tests were performed on 375 wood specimens... 

    Assessment of plain and glass fiber-reinforced concrete under impact loading: a new approach via ultrasound evaluation

    , Article Journal of Nondestructive Evaluation ; Volume 38, Issue 4 , 2019 ; 01959298 (ISSN) Soleimanian, E ; Toufigh, V ; Sharif University of Technology
    Springer  2019
    Abstract
    Impact loading leads to micro-crack formation that can compromise the performance of the concrete. The purpose of this paper is to evaluate plain concrete and fiber-reinforced concrete specimens using ultrasound methods under impact loading. These specimens were prepared and subjected to impact loading. Ultrasound tests were performed at different stages of impact loading on each specimen. The loading continued until cracks on the surface of the specimens were observed. Investigations were performed for both plain concrete and fiber-reinforced concrete to establish a correlation between ultrasound response characteristics, and the damage caused by impact loading due to the energy of blows... 

    Experimental evaluation of pinned frame equipped with ribbed bracing system

    , Article Journal of Earthquake Engineering ; Volume 23, Issue 8 , 2019 , Pages 1297-1317 ; 13632469 (ISSN) Mohammadi, H ; Toufigh, V ; Golafshani, A. A ; Arzeytoon, A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    This study presents the experimental investigation of half-scale, one-story, one-bay pinned frames equipped with a ribbed bracing system (RBS). The RBS is a newly developed passive control system designed to eliminate buckling and enhance the seismic behavior of structures. Here, mechanical models of this bracing system were designed and constructed. Pinned frames equipped with the RBS were cyclically tested. The hysteretic behavior and energy absorbing capacities of the frames were evaluated. Based on the results, the full plastic capacity of the brace was achieved and no buckling occurred. The RBS frame illustrated proper hysteretic behavior and energy dissipation capacity up to 4% story...