Loading...
Search for: transport-properties
0.009 seconds
Total 124 records

    Extreme light absorption in a necking-free monolayer of resonant-size nanoparticles for photoelectrochemical cells

    , Article Journal of Optics (United Kingdom) ; Vol. 16, issue. 7 , 2014 ; ISSN: 20408978 Dabirian, A ; Sharif University of Technology
    Abstract
    Semiconductor photoelectrodes for water oxidation that absorb visible light usually have poor electronic transport properties and small optical absorption coefficients near their absorption edge. Therefore, innovative designs that lead to significant optical absorption in relatively thin layers of these compounds are highly desirable. Here, using full-field electromagnetic optical simulations, we demonstrate that a monolayer of resonant-size BiVO4 spheres can provide enhancement up to a factor of two in solar light absorption relative to dense planar layers. In this monolayer, BiVO4 spheres do not need to be interconnected; therefore, such monolayers are flexible and their fabrication... 

    Role of 3D-paired pentagon-heptagon defects in electronic and transport properties of zigzag graphene nanoribbons

    , Article Applied Physics A: Materials Science and Processing ; Volume 116, Issue 1 , July , 2014 , Pages 295-301 ; ISSN: 09478396 Fotoohi, S ; Moravvej Farshi, M. K ; Faez, R ; Sharif University of Technology
    Abstract
    Electronic and transport properties of 11 zigzag graphene nanoribbons (11-z-GNRs) with two types of 3D-paired pentagon-heptagon defects (3D-PPHDs) are studied using density functional theory combined with non-equilibrium Green's function method. The C ad-dimers that have been introduced to z-GNRs to form these 3D-PPHDs have induced local strains forcing the C-bonds in the ad-dimers to hybridize in sp3-like rather than sp2-like orbitals. Such transformations that cause extra electrons to accumulate around the 3D-PPHDs are responsible for the variations in the electronic and transport properties of the defected z-GNRs. Density of states (DOS) for 11-z-GNRs containing either type of 3D-PPHDs,... 

    Electronic and transport properties of monolayer graphene defected by one and two carbon ad-dimers

    , Article Applied Physics A: Materials Science and Processing ; Vol. 116, issue. 4 , 2014 , p. 2057-2063 Fotoohi, S ; Moravvej-Farshi, M. K ; Faez, R ; Sharif University of Technology
    Abstract
    Using density functional theory combined with non-equilibrium Green's function method, we have investigated the electronic and transport properties of graphenes defected by one and two carbon ad-dimers (CADs), placed parallel to the graphene lattice. Addition of these CADs to graphenes creates 3D paired pentagon-heptagon defects (3D-PPHDs). The band structure, density of states (DOS), quantum conductance, projected DOS, as well as the current-voltage characteristic per graphene super-cells containing each type of 3D-PPHD are calculated. The local strain introduced to graphene by 3D-PPHDs forces the C-bonds in the dimers to hybridize in sp 3-like rather than sp 2-like orbitals, creating... 

    Thermal transport characteristics pertinent to electrokinetic flow of power-law fluids in rectangular microchannels

    , Article International Journal of Thermal Sciences ; Vol. 79, issue , 2014 , p. 76-89 Vakili, M. A ; Saidi, M. H ; Sadeghi, A ; Sharif University of Technology
    Abstract
    In the present study, the thermal characteristics of electroosmotic flow of power-law fluids in rectangular microchannels in the presence of pressure gradient are investigated. The governing equations for fully developed flow under H1 thermal boundary conditions are first made dimensionless and subsequently solved through a finite difference procedure for a non-uniform grid. The influence of the major parameters on thermal features of the flow such as the temperature distribution and Nusselt number is discussed by a complete parametric study. The results reveal that the channel aspect ratio and the non-Newtonian characteristic of the fluid can affect the thermal behavior of the flow. It is... 

    Reacting turbulent flow simulation to improve the mixing process in an oil refinery incinerator

    , Article American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM ; Vol. 1C, issue , August , 2014 ; ISBN: 9780791846230 Darbandi, M ; Abrar, B ; Barezban, M. B ; Faridvand, A ; Schneider, G. E ; Sharif University of Technology
    Abstract
    Combustion emission is one of the most important issues in the design of industries. Todays' strict environmental standards have limited the productions of CO, NOx, SOx, and other hazardous pollutants from the related industries. In this work, we study a typical oil refinery incinerator, which is used to burn waste gases residue produced during bitumen production process. The waste gas mainly includes a mixture including N2, H2O-vapor, and O2 species. Additionally, there are significant amounts of CO species and CxHy droplets in the waste gas composition. The measurements show that the CO emission becomes so crucial in high flow rate of feeding waste gas to the incinerator. Here, we... 

    Theoretical-experimental investigation of Co emission from an oil refinery incinerator

    , Article American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM ; Vol. 1C, issue , 2014 Darbandi, M ; Abrar, B ; Yazdi, M. K ; Zeinali, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this paper, we investigate the CO emission from an oil refinery gas incinerator both theoretically and experimentally. At the beginning of this research, our collected data from this incinerator showed that the CO contamination would be far exceeding the permissible environmental standards at the stack exhaust. Therefore, we decided to perform a combined theoretical-experimental study to find a reasonable solution to reduce the CO pollution suitably. Our theoretical study showed that a reliable solution would be to increase the incinerator operating temperature. However, we needed to collect some data from this incinerator to examine if our achieved analytical solution would work... 

    Peculiar transport properties in Z-shaped graphene nanoribbons: A nanoscale NOR gate

    , Article Thin Solid Films ; Volume 548 , 2013 , Pages 443-448 ; 00406090 (ISSN) Khoeini, F ; Khoeini, F ; Shokri, A ; Sharif University of Technology
    2013
    Abstract
    A nanoscale logic NOR gate has been theoretically designed by magnetic flux inputs in a Z-shaped graphene nanoribbon composed of an armchair ribbon device sandwiched between two semi-infinite metallic zigzag ribbon leads. The calculations are based on the tight-binding model and iterative Green's function method, in which the conductance as well as current-voltage characteristics of the nanosystem are calculated, numerically. We show that the current and conductance are highly sensitive to both the magnetic fluxes subject to the device and the size of the system. Our results may have important applications for building blocks in the nanoelectronic devices based on graphene nanoribbons  

    Effect of stone-wales defects on electronic properties of armchair graphene nanoribbons

    , Article 2013 21st Iranian Conference on Electrical Engineering, ICEE 2013 ; 2013 , 14-16 May ; 9781467356343 (ISBN) Samadi, M ; Faez, R ; Sharif University of Technology
    2013
    Abstract
    In this paper, the effects of Stone-Wales (SW) defect on transport properties of armchair graphene nanoribbons (AGNRs) are studied using tight binding calculations combined with nonequilibrium Green's function (NEGF). We evaluate transmission and density of states (DOS) in two cases, pristine and defective AGNR, and we compare the results. Our results indicate that in the latter case, a larger bandgap is made due to symmetry breaking in GNR layer  

    Controlling electron injection and electron transport of dye-sensitized solar cells aided by incorporating CNTs into a Cr-doped TiO2 photoanode

    , Article Electrochimica Acta ; Volume 111 , 2013 , Pages 921-929 ; 00134686 (ISSN) Massihi, N ; Mohammadi, M. R ; Bakhshayesh, A. M ; Abdi Jalebi, M ; Sharif University of Technology
    2013
    Abstract
    In the present work, we focused on simultaneously control electron injection and electron transport, in dye-sensitized solar cells (DSSCs), aided by introducing Cr3+ and CNTs into a TiO2 photoanode, respectively. X-ray photoelectron spectroscopy (XPS) revealed that, Cr 3+ and CNTs were successfully incorporated into the TiO2 lattice without forming secondary phases. X-ray diffraction (XRD) analysis showed that Cr introduction has perfectly balanced the amount of anatase and rutile phases in order to accomplish a more efficient cell. Field emission scanning electron microscope (FE-SEM) images showed deposited films to have a porous morphology composed of nanoparticles and TiO2 nanoparticles... 

    Theoretical investigation on antioxidant activity of bromophenols from the marine red alga Rhodomela confervoides: H-atom vs electron transfer mechanism

    , Article Journal of Agricultural and Food Chemistry ; Volume 61, Issue 7 , 2013 , Pages 1534-1541 ; 00218561 (ISSN) Javan, A. J ; Javan, M. J ; Tehrani, Z. A ; Sharif University of Technology
    2013
    Abstract
    Bromophenols are known as antioxidant radical scavengers for some biomolecules such as those in marine red alga. Full understanding of the role played by bromophenols requires detailed knowledge of the radical scavenging activities in probable pathways, a focus of ongoing research. To gain detailed insight into two suggested pathways, H-atom transfer and electron transfer, theoretical studies employing first principle quantum mechanical calculations have been carried out on selected bromophenols. Detailed investigation of the aforementioned routes revealed that upon H-atom abstraction or the electron transfer process, bromophenols cause an increase in radical species in which the unpaired... 

    Optoelectronic properties of cauliflower like ZnO-ZnO nanorod/p-Si heterostructure

    , Article Solid-State Electronics ; Volume 80 , 2013 , Pages 33-37 ; 00381101 (ISSN) Rajabi, M ; Dariani, R. S ; Iraji Zad, A ; Zahedi, F ; Sharif University of Technology
    2013
    Abstract
    The cauliflower like ZnO nanostructures are grown on ZnO nanorods using spray pyrolysis method. First, ZnO nanorod arrays are grown on p-type silicon substrate without catalyst by chemical vapor transport and condensation method in a horizontal tube furnace. Afterwards, the cauliflower like ZnO nanostructures is deposited on top of the ZnO nanorod array. The PL spectra of cauliflower like ZnO nanostructures consist of UV emission bands around 387 nm and a visible emission at ∼440 nm. The current-voltage (I-V) measurement under dark and UV illumination condition are performed to study photodetection of the cauliflower like ZnO-ZnO nanorod/p-Si heterostructure. The experimental data of dark... 

    Electrokinetically driven fluidic transport of power-law fluids in rectangular microchannels

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 414 , 2012 , Pages 440-456 ; 09277757 (ISSN) Vakili, M. A ; Sadeghi, A ; Saidi, M. H ; Mozafari, A. A ; Sharif University of Technology
    2012
    Abstract
    Electroosmosis is the predominant mechanism for flow generation in lab-on-chip devices. Since most biofluids encountered in these devices are considered to be non-Newtonian, it is vital to study the flow characteristics of common non-Newtonian models under electroosmotic body force. In this paper, the hydrodynamically fully developed electroosmotic flow of power-law fluids in rectangular microchannels is analyzed. The electrical potential and momentum equations are numerically solved through a finite difference procedure for a non-uniform grid. A thoroughgoing parametric study reveals that the Poiseuille number is an increasing function of the channel aspect ratio, the zeta potential, the... 

    Structural phase of y358 superconductor comparison with Y123

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 25, Issue 7 , October , 2012 , Pages 2253-2258 ; 15571939 (ISSN) Gholipour, S ; Daadmehr, V ; Rezakhani, A. T ; Khosroabadi, H ; Tehrani, F. S ; Akbarnejad, R. H ; Sharif University of Technology
    Springer  2012
    Abstract
    We analyze an experiment in which two distinct superconducting phases YBa2Cu3O7-δ (Y123) and Y 3Ba5Cu8O18-δ (Y358) coexisted. This experiment enabled us to characterize the recently introduced Y358 phase in contrast to the Y123 phase, thus to resolve some discrepancies reported in associated properties of Y358. Specifically, our experiment indicates the transition temperature Tmid C = 105 K and 94 K for Y358 and Y123, respectively, and that Y358 has five CuO2 planes and three CuO chains, with Pmm2 symmetry and lattice parameter (a, b, c) = (3.845, 3.894, 31.093) Å, in agreement with density functional theory predictions for this specific structure  

    UV photodetection of laterally connected ZnO rods grown on porous silicon substrate

    , Article Sensors and Actuators, A: Physical ; Volume 180 , 2012 , Pages 11-14 ; 09244247 (ISSN) Rajabi, M ; Dariani, R. S ; Iraji Zad, A ; Sharif University of Technology
    2012
    Abstract
    Here, the UV photodetection of ZnO rods grown on porous silicon substrates are reported. Laterally interconnected ZnO rods have been synthesized by chemical vapor transport and condensation method on porous silicon substrates. As characterized by current-voltage measurements the I-V characteristics have linear behavior, indicating space charge effect. The device exhibits photocurrent response of 0.027 A/W for 325 nm UV light under -5 V bias. The rise and decay time constants under these conditions are 19 and 62 s, respectively  

    Heat transfer characteristics of mixed electroosmotic and pressure driven flow of power-law fluids in a slit microchannel

    , Article International Journal of Thermal Sciences ; Volume 53 , 2012 , Pages 71-79 ; 12900729 (ISSN) Babaie, A ; Saidi, M. H ; Sadeghi, A ; Sharif University of Technology
    2012
    Abstract
    Thermal transport characteristics of electroosmotic flow of power-law fluids in the presence of pressure gradient through a slit microchannel are studied in this paper. Considering a fully developed flow with a constant wall heat flux as the boundary condition, the governing equations are numerically solved by means of the finite difference method. A complete parametric study is done in order to investigate the effects of different flow parameters on the thermal behaviors of the flow. The results show that the non-Newtonian characteristic of the fluid can influence the thermal behaviors of the flow by affecting the rate of heat convection and viscous dissipation; however, its influence... 

    Combined influences of viscous dissipation, non-uniform Joule heating and variable thermophysical properties on convective heat transfer in microtubes

    , Article International Journal of Heat and Mass Transfer ; Volume 55, Issue 4 , January , 2012 , Pages 762-772 ; 00179310 (ISSN) Yavari, H ; Sadeghi, A ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    This study presents a comprehensive investigation on hydrodynamic and thermal transport properties of mixed electroosmotically and pressure driven flow in microtubes. Particular emphasis is given to investigating the combined consequences of viscous dissipation, non-uniform Joule heating, and variable thermophysical properties. Analytical solutions are obtained using the Debye-Hückel linearization and constant fluid properties assumption, while a numerical solution is presented for variable fluid properties and non-uniform distribution of Joule heating. The results indicate that, viscous heating effect is pronounced significantly when a favorable pressure gradient exists and cannot be... 

    Charge transport properties in nanocomposite photoanodes of DSSCs: Crucial role of electronic structure

    , Article EPJ Applied Physics ; Volume 57, Issue 2 , February , 2012 ; 12860042 (ISSN) Samadpour, M ; Taghavinia, N ; Iraji Zad, A ; Marandi, M ; Tajabadi, F ; Sharif University of Technology
    Abstract
    TiO 2 nanorods, TiO 2 nanorod/TiO 2 nanoparticle and TiO 2 nanorod/ZnO nanoparticle composite structures were integrated as photoanodes in backside illuminated dye-sensitized solar cells (DSSCs). Incorporation of TiO 2 nanoparticles into the bare nanorods increased the dye loading and improved the short-circuit current density (J sc) from 2.22 mA/cm 2 to 3.57 mA/cm 2. ZnO nanoparticles electrochemically grown into the TiO 2 nanorod layer could increase the surface area. Nevertheless, this considerably reduced the J sc to 0.57 mA/cm 2 and consequently cell efficiency. Electrochemical impedance spectroscopy (EIS) results showed that ZnO incorporated samples have better effective diffusion... 

    A new scheme for improving the mixing efficiency in micro scale

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011 ; Volume 1 , 2011 , Pages 183-191 ; 9780791844632 (ISBN) Anbari, A. M ; Haroutunian, A ; Saidi, M. S ; Shafii, M. B ; Sharif University of Technology
    2011
    Abstract
    Generally speaking, most micro-fluidic mixing systems are limited to the low Reynolds number regime in which diffusion dominates convection, and consequently the mixing process tends to be slow and it takes a relatively long time to have two fluids completely mixed. Therefore, rapid mixing is essential in micro-fluidic systems. In order to hasten the mixing process in micro scale, in this study we come up with a novel scheme for a two dimensional micro-fluidic mixer which encompasses three pairs of electrodes, one pair embedded in the mixing chamber and two pairs located in the micro-channels before and after the mixing chamber. The width of the middle pair is assumed to be twice of the... 

    An investigation of ZGNR-based transistors

    , Article 2011 International Semiconductor Device Research Symposium, ISDRS 2011, 7 December 2011 through 9 December 2011 ; December , 2011 , Page(s): 1 - 2 ; 9781457717550 (ISBN) Karamitaheri, H ; Pourfath, M ; Faez, R ; Kosina, H ; Sharif University of Technology
    2011
    Abstract
    Graphene, a recently discovered form of carbon, has received much attention for possible applications in nanoelectronics, due to its excellent carrier transport properties [1]. Graphene nanoribbons (GNRs) are thin strips of graphene, where the electronic properties depend on the chirality of the edge and the width of the ribbon. Zigzag GNRs (ZGNRs) show metalic behavior, whereas armchair GNRs (AGNRs) are semiconductors and their band-gap is inversely proportional to their width [2]. Therefore, narrow AGNRs have been recently suggested as a material for transistor channels. However, line edge roughness and substrate impurities can significantly degrade the ballistic transport in AGNRs,... 

    Structural and electrical transport properties of hexagonal 4H BaRu 1-xMnxO3 perovskite

    , Article Physica B: Condensed Matter ; Volume 406, Issue 18 , September , 2011 , Pages 3363-3366 ; 09214526 (ISSN) Mazaheri, M ; Fallahi, S ; Akhavan, M ; Sharif University of Technology
    2011
    Abstract
    In this paper, structural and electrical transport properties of hexagonal, 4H-type, BaRu1-xMnxO3 (x=0-0.3), synthesized by the solid-state reaction method at ambient pressure, have been presented. Electrical transport properties are measured over a temperature range of 10300 K in the magnetic field up to 15 kOe. The low temperature resistivity (10K