Loading...
Search for: transport-properties
0.01 seconds
Total 124 records

    Structural and Electric Transport Properties of Lanthanum Based Manganites and Barium Based Ruthenates

    , Ph.D. Dissertation Sharif University of Technology Mazaheri, Mojtaba (Author) ; Akhavan, Mohammad (Supervisor)
    Abstract
    The goal of this thesis is to understand the physical properties of lanthanum based manganites and barium based ruthenates. In order to obtain negative colossal magnetoresistance in manganites and fabrication of barium ruthenate in ordinary condition, the effects of variables such as ionic radii, chemical composition, temperature, magnetic field and processing in manganites and ruthenates systems are investigated. In the first part, the effects of potassium doping on structure, metalinsulator transition and magnetoresistance in )La1-yKy)0.7 Ca0.3 MnO3 and)La1-yKy)0.7 Ba0.3 MnO3 manganites systems are studied. Polycrystalline samples of manganites are synthesized by the sol‐gel method. In the... 

    The Effect of Pressure on the Coexistence of Superconductivity and Magnetism in RuSr2GdCu2O8 and RuSr2Gd1.4Ce0.6Cu2O10-δ

    , Ph.D. Dissertation Sharif University of Technology Fallahi, Saeed (Author) ; Akhavan, Mohammad (Supervisor)
    Abstract
    The coexistence of long-range magnetic order and superconductivity in the ruthenocuprate families, Ru1212 and Ru1222 has been studied both theoretically and experimentally. Historically these two different phases are incompatible with each other and in the most previous research reported on the coexistence of these phases, there have been observed separated magnetic and superconducting phases. However in the ruthenocuprate families, there is a single phase with both magnetic and superconducting phase which coexist with each other. It has been determined that superconductivity arises in CuO2 planes, and magnetic orders occur in RuO2. From experimental point of view, we have investigated the... 

    Effect of the Blast Furnace Slag on Microstructural and Transport Properties of the Fly Ash-based Geopolymers

    , M.Sc. Thesis Sharif University of Technology Azimi, Zahir (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    Alkali-activated fly ash-slag (AAFS) is a new type of sustainable construction material widely studied in recent years for its desirable mechanical properties and low environmental impacts. In this study, the effects of the slag incorporation from 10 to 30% of fly ash are investigated on the strength, pore structure, and transport properties of the AAFS with various levels of fly ash replacements with slag. The unconfined compression and ultrasonic pulse velocity tests were performed to evaluate the mechanical properties of the AAFS concrete. Microstructural and mineralogical changes were studied by porosity, N2-adsorption/desorption, and SEM/EDX tests. Additionally, transport properties... 

    An Investigation into Entanglement in Electrical Transport in a One-dimensional Model Using Transfer Matrix Method

    , M.Sc. Thesis Sharif University of Technology Safari, Maryam (Author) ; Rezakhani, Ali (Supervisor) ; Shokri, Ali Asghar (Co-Supervisor)
    Abstract
    This thesis analyzes the scattering of a propagating electron from a single bound electron .The study demonstrates how the scattering of the propagating electron from the bound electron causes entanglement between two electrons. The study then considers the impact of spin-dependent scattering in the presence of Hartree and exchange potentials. In the first step, only an exchange potential is studied. Transmission coefficients are calculated for spin-flip and non-spin-flip states by solving the Hamiltonian equation in different regions, applying the continuity boundary conditions for the wave function and its derivative in each region, and using the transfer matrix method. Transmission... 

    Numerical Modeling of Porous Burner

    , M.Sc. Thesis Sharif University of Technology Saediamiri, Meghdad (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Saeedi, Mohammad Hassan (Supervisor)
    Abstract
    Porous burner technology has many advantages in comparison with conventional burners such as higher burner thermal performance, lower pollutants emission, high power ranges, fuel flexibility, compact geometry and higher turn down ratios. These kinds of burners are made of preheated porous combustion zone and combustion porous zone that have different thermophysical and geometrical properties. In this work, the transient one-dimensional multi-step premixed laminar reacting flows in a two-stage porous media burner have been investigated. The combustible mixture is considered H2-Air (9 species and 19 reactions) and CH4-Air (22 species and 49 reactions). In porous media, without lateral wall... 

    Modification of Repulsive and Attraction Branches of the Potential Models to Calculate the Equilibrium and Transport Properties of Liquids

    , M.Sc. Thesis Sharif University of Technology Razavi Majarashin, Asghar (Author) ; Parsafar, GHolamabbas (Supervisor)
    Abstract
    Several potential models such as Sutherland (ST) and square-well (SW) potential models are used for studying the equilibrium and transport properties. Near and above the inversion temperature these potential models fail to predict the second virial coefficient, so they are not applicable at high temperatures. ST and SW potential models have two different branches; one branch is related to the attraction forces and the other to the repulsive forces. Each branch has its own unique parameters, for example parameters of attraction branch are ε/k (the depth of the potential model) and λ (the width of the potential model). Repulsive branch has only one parameter, σ (the molecular diameter).... 

    Study of Injection Process from Bi-Swirl Injector in Supercritical Condition

    , M.Sc. Thesis Sharif University of Technology Dorosti, Ehsan (Author) ; Farshchi, Mohammad (Supervisor) ; Mardani, Amir (Co-Advisor)
    Abstract
    Presently, a wide range of devices operate at supercritical condition. In fact, supercritical condition refers to a condition in which both temperature and pressure of injected fluid exceed the critical point. In the case of modern internal combustion engine, the temperature and pressure of combustion chamber is high enough that can be considered as supercritical condition, whilst the fuel injected may be subcritical or transcritical.It has been widely accepted that in supercritical state, vaporization enthalpy is vanished and there is no distinction between gas and liquid. Hence, only a single state will remain which is neither liquid nor gas and referred to as fluid. Moreover, many... 

    Calculation of Transport Properties of Dense Fluids Using Modified Enskog Theory (MET) and Appropriate Equation of State (EoS)

    , M.Sc. Thesis Sharif University of Technology Ansari, Parisa (Author) ; Parsafar, Gholam Abbas (Supervisor)
    Abstract
    In this research, a method based on the modified Enskog theory (MET) and some equations of state has been used to calculate the transport properties of some dense fluids. The main limitation to using the MET is the lack of experimental data for the co-volume, b0, that are substituted from the hard sphere (HS) theory, and the zero density transport properties that are substituted from the kinetic theory of gases for the HS in the MET expression, because of the fact that dense fluids behave more and less like a HS fluid. So a quadratic expression for both ηY/(√T ρ) and λY/(ρ√T) (C_(V,m)+ (9/4)R) in terms of Y at high densities (ρ > ρc) for each isotherm is expected, where Y = (T (∂p/∂T))/ρRT... 

    Enhanced electron transport induced by a ferroelectric field in efficient halide perovskite solar cells

    , Article Solar Energy Materials and Solar Cells ; Volume 206 , 2020 Zarenezhad, H ; Askari, M ; Halali, M ; Solati, N ; Balkan, T ; Kaya, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Perovskite solar cells have been appearing as a superior photovoltaic device owing to their high photovoltaic performance and low cost of fabrication. The formation of a compact and uniform perovskite layer with large crystal size is a significant factor to get the best device performance. In this work, polyvinylidene difluoride (PVDF) was used as a ferroelectric polymer additive to fabricate high-performance mesoporous CH3NH3PbI3-xClx mixed-halide perovskite solar cells in a sequential deposition method. Power conversion efficiency has been enhanced from 10.4 to 16.51% in an ambient atmosphere in the presence of an optimized amount of PVDF assuring continuous and smooth layers with large... 

    Numerical modeling and simulation of drilling cutting transport in horizontal wells

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 8, Issue 2 , 2018 , Pages 455-474 ; 21900558 (ISSN) Zakerian, A ; Sarafraz, S ; Tabzar, A ; Hemmati, N ; Shadizadeh, S. R ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Cutting transport is an important goal in drilling operation especially in horizontal and deviated wells since it can cause problems such as stuck pipe, circulation loss and high torque and drag. To this end, this article focused on the affecting parameters on the cutting transport by computational fluid dynamic (CFD) modeling and real operational data. The effect of drilling fluid and cutting density on the pressure drop, deposit ratio and string stress on the cutting transport has been investigated. A systematic validation study is presented by comparing the simulation results against published experimental database. The results showed that by increasing two times of drilling fluid... 

    Mass transport analysis of non-Newtonian fluids under combined electroosmotically and pressure driven flow in rectangular microreactors

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 508 , 2016 , Pages 345-359 ; 09277757 (ISSN) Yousefian, Z ; Saidi, M. H ; Sharif University of Technology
    Elsevier 
    Abstract
    Hydrodynamically fully developed flow of power-law fluids under combined action of electroosmotic and pressure gradient forces in rectangular microreactors is analyzed considering heterogeneous catalytic reactions. The Poisson-Boltzmann, Cauchy momentum, and concentration equations are considered in two dimensions and after being dimensionless are numerically solved applying a finite difference algorithm. Variation of axial concentration gradient, and axial and horizontal mass diffusions are taken into account as well. To accomplish a more general analysis, the velocity distribution is obtained by solving continuity and Cauchy momentum equations and is not considered as an average axial... 

    Combined influences of viscous dissipation, non-uniform Joule heating and variable thermophysical properties on convective heat transfer in microtubes

    , Article International Journal of Heat and Mass Transfer ; Volume 55, Issue 4 , January , 2012 , Pages 762-772 ; 00179310 (ISSN) Yavari, H ; Sadeghi, A ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    This study presents a comprehensive investigation on hydrodynamic and thermal transport properties of mixed electroosmotically and pressure driven flow in microtubes. Particular emphasis is given to investigating the combined consequences of viscous dissipation, non-uniform Joule heating, and variable thermophysical properties. Analytical solutions are obtained using the Debye-Hückel linearization and constant fluid properties assumption, while a numerical solution is presented for variable fluid properties and non-uniform distribution of Joule heating. The results indicate that, viscous heating effect is pronounced significantly when a favorable pressure gradient exists and cannot be... 

    Direct Discrete Method (DDM) and its application to neutron transport problems

    , Article Scientia Iranica ; Volume 14, Issue 1 , 2007 , Pages 78-85 ; 10263098 (ISSN) Vosoughi, N ; Salehi, A. A ; Shahriari, M ; Heshmatzadeh, M ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    The objective of this paper is to introduce a new direct method for neutronic calculations. This method, called Direct Discrete Method (DDM), is simpler than the Neutron Transport Equation and more compatible with the physical meanings of the problem. The method, based on the physics of the problem, initially-runs through meshing of the desired geometry. Next, the balance equation for each mesh interval is written. Considering the connection between the mesh intervals, the final discrete equation series are directly obtained without the need to first pass through the set-up of the neutron transport differential equation. In this paper, a single and multigroup neutron transport discrete... 

    Thermal transport characteristics pertinent to electrokinetic flow of power-law fluids in rectangular microchannels

    , Article International Journal of Thermal Sciences ; Vol. 79, issue , 2014 , p. 76-89 Vakili, M. A ; Saidi, M. H ; Sadeghi, A ; Sharif University of Technology
    Abstract
    In the present study, the thermal characteristics of electroosmotic flow of power-law fluids in rectangular microchannels in the presence of pressure gradient are investigated. The governing equations for fully developed flow under H1 thermal boundary conditions are first made dimensionless and subsequently solved through a finite difference procedure for a non-uniform grid. The influence of the major parameters on thermal features of the flow such as the temperature distribution and Nusselt number is discussed by a complete parametric study. The results reveal that the channel aspect ratio and the non-Newtonian characteristic of the fluid can affect the thermal behavior of the flow. It is... 

    Electrokinetically driven fluidic transport of power-law fluids in rectangular microchannels

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 414 , 2012 , Pages 440-456 ; 09277757 (ISSN) Vakili, M. A ; Sadeghi, A ; Saidi, M. H ; Mozafari, A. A ; Sharif University of Technology
    2012
    Abstract
    Electroosmosis is the predominant mechanism for flow generation in lab-on-chip devices. Since most biofluids encountered in these devices are considered to be non-Newtonian, it is vital to study the flow characteristics of common non-Newtonian models under electroosmotic body force. In this paper, the hydrodynamically fully developed electroosmotic flow of power-law fluids in rectangular microchannels is analyzed. The electrical potential and momentum equations are numerically solved through a finite difference procedure for a non-uniform grid. A thoroughgoing parametric study reveals that the Poiseuille number is an increasing function of the channel aspect ratio, the zeta potential, the... 

    Dissipative vibrational model for chiral recognition in olfaction

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 92, Issue 3 , 2015 ; 15393755 (ISSN) Tirandaz, A ; Taher Ghahramani, F ; Shafiee, A ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    We examine the olfactory discrimination of left- and right-handed enantiomers of chiral odorants based on the odorant-mediated electron transport from a donor to an acceptor of the olfactory receptors embodied in a biological environment. The chiral odorant is effectively described by an asymmetric double-well potential whose minima are associated to the left- and right-handed enantiomers. The introduced asymmetry is considered an overall measure of chiral interactions. The biological environment is conveniently modeled as a bath of harmonic oscillators. The resulting spin-boson model is adapted by a polaron transformation to derive the corresponding Born-Markov master equation with which we... 

    Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability

    , Article Advanced Energy Materials ; Volume 8, Issue 23 , 2018 ; 16146832 (ISSN) Tavakoli, M. M ; Yadav, P ; Tavakoli, R ; Kong, J ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Interfacial studies and band alignment engineering on the electron transport layer (ETL) play a key role for fabrication of high-performance perovskite solar cells (PSCs). Here, an amorphous layer of SnO2 (a-SnO2) between the TiO2 ETL and the perovskite absorber is inserted and the charge transport properties of the device are studied. The double-layer structure of TiO2 compact layer (c-TiO2) and a-SnO2 ETL leads to modification of interface energetics, resulting in improved charge collection and decreased carrier recombination in PSCs. The optimized device based on a-SnO2/c-TiO2 ETL shows a maximum power conversion efficiency (PCE) of 21.4% as compared to 19.33% for c-TiO2 based device.... 

    Spin dependent recombination in magnetic semiconductor

    , Article Applied Physics Letters ; Volume 94, Issue 24 , 2009 ; 00036951 (ISSN) Tashpour, H ; Vesaghi, M. A ; Sharif University of Technology
    2009
    Abstract
    The effect of spin dependent recombination on the transport properties of magnetic semiconductors is investigated theoretically. In particular, for p -type direct band gap semiconductors, a theory based on classic Shockley equations is formulated. In this theory the density of spin and charge has been evaluated analytically by solving the diffusive transport equation and it is shown that the difference between recombination rates affect the lifetimes of spin and charge significantly. It is also demonstrated that a considerable spin charge coupling occur. Application of this theory to pure band to band recombination process is discussed. © 2009 American Institute of Physics  

    Binder-free 3D graphene nanostructures on Ni foam substrate for application in capacitive deionization

    , Article Diamond and Related Materials ; Volume 120 , 2021 ; 09259635 (ISSN) Talebi, M ; Ahadian, M. M ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Hereby a simple, low-cost and scalable route is being presented for preparation of binder-free electrodes of reduced graphene oxide (RGO) on Ni foam (Ni/Gr). In this regard, the Ni foams are dipped in graphene oxide (GO) slurry. Next, the GO loaded Ni foams are kept in a freeze dryer for 24 h and heated up to 800 °C in an inert atmosphere. In this approach, the amount of active materials can be easily optimized for capacitive deionization (CDI). The characterization of Ni/Gr electrodes revealed a 3D porous assembly of RGO on Ni substrate which is helpful for the fast ion diffusion and rapid electron transport. The electrochemical performance of the prepared electrodes is investigated in both... 

    Investigation of the interfacial electron transfer kinetics in ferrocene-terminated oligophenyleneimine self-assembled monolayers

    , Article Langmuir ; Volume 36, Issue 42 , 2020 , Pages 12572-12579 Taherinia, D ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    In this article, the synthesis, characterization, and cyclic voltammetry (CV) measurements are reported for ferrocene-terminated oligophenyleneimine (OPI_Fc) and ferrocene-terminated conjugation-broken oligophenyleneimine (CB-OPI_Fc) self-assembled monolayers (SAMs) in two different electrolytes, namely, 1-ethyl-3-methylimidazolium-bis (trifluoromethyl-sulfonyl) imide (EMITFSI) ionic liquid and tetrabutylammonium hexafluorophosphate (Bu4NPF6) in acetonitrile (0.1 M solution). The SAMs were synthesized on Au surfaces by the sequential imine condensation reactions. CV was used to investigate the kinetics of electron transfer (ET) to the ferrocene, and it was observed that the standard ET rate...