Loading...
Search for: viscoelastic-modeling
0.005 seconds

    Mechanical Model in Cell and Nucleus Deformation

    , M.Sc. Thesis Sharif University of Technology Heydari, Tiam (Author) ; Ejtehadi, Mohammad Reza (Supervisor)
    Abstract
    Now a days, the ability of measuring the mechanical properties of the living cells in in experiments has been increased. Experiments shows that the stem cells could alter their faith in different mechanical situations, but an integrated model about this phenomenon in literature has not been introduced yet. In this research thesis s minimal cell model (MMC) is developed to capture the behavior of the cells on substrates with varying mechanical properties and morphologies, MMC consists of large scale models for outer membrane of the cell and nuclear envelope, cytoplasmic area, chromatin fibers and Extra cellular matrix. Each component of the MMC will be placed in an integrated software to... 

    Numerical Modeling of Endothelial Cell’s Groups Migration in a Microfluidics Device

    , M.Sc. Thesis Sharif University of Technology Abeddoust, Mohammad (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    Cell migration plays a key role in many biological processes including metastasis, wound healing, inflammatory response, body immune response and formation of new blood vessels. The migration of cells in response to the gradient of concentration gradient is regarded as chemotaxis. In the present study, the group chemotaxis of endothelial cells is simulated in response to gradient concentration of biochemical species using a developed cell migration model. At the first step, the numerical simulation of fluid flow and concentration transport of biochemical species is performed using a developed FVM code. At the second part, a model is developed to mimic the group migration of endothelial... 

    Dynamics and Control of Needle Movement in Percutaneous Interaction with Prostate Tissue

    , Ph.D. Dissertation Sharif University of Technology Maghsoudi, Arash (Author) ; Jahed, Mehran (Supervisor)
    Abstract
    In many modern medical procedures, needle insertion is an inevitable part of the diagnosis or treatment protocols. The accuracy of the needle insertion is adversely affected by a number of factors. A needle, frequently assumed to be flexible, is inserted into a soft tissue and induces complex mechanical interactions that may result in considerable uncertainties. Tissue intrinsic characteristics as well as its deformation and rotation may cause dramatic complexities. This work considers the needle movement inside the tissue from the dynamics and control point of view. The proposed approach can be regarded as an initial step towards automation of needle insertion procedures; it can also be... 

    Real-time Simulation of Soft Tissue in Virtual Environments Using a Haptic Interface

    , M.Sc. Thesis Sharif University of Technology Heydari Kamarroudi, Mehdi (Author) ; Meghdari, Ali (Supervisor)
    Abstract
    Surgical simulators present a safe, practical, and ethical method for surgical training. In order to enhance realism and provide the user with an immersive training experience, simulators should have the capability to provide haptic feedback to the user. Accurate modeling of the interaction between surgical instruments and organs has been recognized as a key requirement in the development surgical simulators. Researchers have attempted to model tool-tissue interactions in a wide variety of ways, which can be broadly classified as (1) continuum mechanics-based,(2) discrete elements-based methods.
    This thesis presents an improved model of static Long Elements Method (LEM), a new method... 

    Optical flow-based motion estimation of ultrasonic images for force estimation in percutaneous procedures: Theory and experimental validation

    , Article IECON Proceedings (Industrial Electronics Conference), 25 October 2012 through 28 October 2012 ; October , 2012 , Pages 1557-1560 ; 9781467324212 (ISBN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    2012
    Abstract
    In recent years, there hass been a pronounced emphasis on percutaneous needle steering with the aid of advanced soft tissue modeling techniques. In this work an optical flow based motion estimation method is used to estimate the force applied to the needle by the soft tissue during percutaneous applications. The study considers Finite Element Model (FEM) of the tissue evaluated by the deformation data acquired through the optical flow method. To represent the soft tissue behavior, dynamic FEM with Rayleigh damping and viscoelastic models are used. The method is validated experimentally through offline evaluation of the ultrasonic images of the chicken breast punctured by a needle. The force... 

    Three dimensional modeling of axonal microtubules

    , Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014, 26 November 2014 through 28 November 2014 ; November , 2014 , Pages 298-302 ; 9781479974177 (ISBN) Manuchehrfar, F ; Shamloo, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2014
    Abstract
    Axon is a filament in neuronal system and axonal microtubules are bundles in axons. In axons, microtubules are coated with microtubule-associated protein tau, a natively unfolded profuse filamentous protein in the central nervous system. These proteins are responsible for the cross-linked structure of the axonal microtubule bundles. Through complimentary dimerization with other tau proteins, bridges are formed to nearby microtubules to create bundles. The transverse reinforcement of microtubules by cross-linking to the cytoskeleton has been shown to enhance their ability to bear compressive loads. Though microtubules are conventionally regarded as bearing compressive loads, in certain... 

    Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

    , Article Mechanics of Time-Dependent Materials ; 2016 , Pages 1-35 ; 13852000 (ISSN) Karimi, M. M ; Tabatabaee, N ; Jahanbakhsh, H ; Jahangiri, B ; Sharif University of Technology
    Springer Netherlands 
    Abstract
    Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt... 

    Fluid-structure interaction analysis of airflow in pulmonary alveoli during normal breathing in healthy humans

    , Article Scientia Iranica ; Volume 23, Issue 4 , 2016 , Pages 1826-1836 ; 10263098 (ISSN) Monjezi, M ; Saidi, M. S ; Sharif University of Technology
    Sharif University of Technology 
    Abstract
    In this work, the human lung alveoli are idealized by a three dimensional honeycomb like geometry and a fluid-structure analysis is performed to study the normal breathing mechanics. In contrast to previous works in which the inlet flow rate is predefined, in this model, we have applied a negative pressure on the outside surface of the alveolus which causes air to flow in and out of the alveolus. The integration of the experimental curve of breathing flow rate was used to approximate the shape of the external applied pressure. Our Fluid-Structure Interaction (FSI) model has an advantage over other literature since it addresses both the fluid dynamics and solid mechanics, simultaneously. The... 

    Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

    , Article Mechanics of Time-Dependent Materials ; Volume 21, Issue 3 , 2017 , Pages 383-417 ; 13852000 (ISSN) Karimi, M. M ; Tabatabaee, N ; Jahanbakhsh, H ; Jahangiri, B ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt... 

    Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force

    , Article Archives of Civil and Mechanical Engineering ; Volume 21, Issue 4 , 2021 ; 16449665 (ISSN) Shao, Y ; Zhao, Y ; Gao, J ; Habibi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    This study investigated FG carbon nanotubes filled composites, which are promising metamaterials that can be useful in the energy absorption field. This structure can absorb energy through elastic deformation. For this issue, absorbed energy and dynamic stability analysis of the FG-CNTRC curved panel surrounded by a non-polynomial viscoelastic substrate using three-dimensional poroelasticity theory is investigated. For stability of the structure after vibrating, the viscoelastic substrate as the non-polynomial viscoelastic model is presented. The curved panel comprises multilayer carbon nanotubes (CNT) which are uniformly distributed in all layers of facing sheets; however, the system’s...