Loading...
Search for: volatile-organic-compounds
0.013 seconds
Total 43 records

    Odor Emission from Evaporation Ponds:Investigation of Pollution Measures

    , M.Sc. Thesis Sharif University of Technology Zeighami, Mohammad Amir (Author) ; Kariminia, Hamid-Reza (Supervisor) ; Borghei, Mehdi (Supervisor)
    Abstract
    Odor caused by the release of volatiles from refinery waste, causing environmental pollution and health hazards may occur. Refinery wastewater project in Saeakhs (Khangiran) has been studied. Contaminated water in evaporation ponds at the plant accumulates due to the large volume of incoming water and slow evaporation in summer the water will smell unpleasant. Odor from the ponds due to wind scattered around the refinery and residents will be put at risk. Several tests to identify the source of the odor was designed and implemented. Among these methods, microalgae growth, the import of oil products such as aromatic compounds or mercaptans, and bacterial growth, for each of the hypotheses... 

    Desion an Appropriate Supported transition Metals Oxide Over Alumina Catalyst for Deep Oxidation of Cyclohexane in Air

    , M.Sc. Thesis Sharif University of Technology Jafari, Masoumeh (Author) ; Khorashe, Farhad (Supervisor) ; Kazemini, Mohammad (Supervisor)
    Abstract
    Volatile Organic Compounds (VOCs) have become an important source of air pollution due to their extended use as solvents in many industrial processes. Aliphatic and aromatic VOC removal from contaminated air can be achieved by a variety of methods including catalytic oxidation, adsorption, and biological treatment. Catalytic oxidation is often the preferred process due to its low cost and high efficiency. Supported transition metal catalysts are effective and inexpensive catalysts for VOC removal from contaminated air. The objective of this project was to prepare low cost transition metal catalysts (Fe, Ni, Co, and Cu) supported on alumina for catalytic oxidation of cyclohexane (as a... 

    Evaluation Of Nano-sorbents for Removal of Ethyl-benzene from Exhaust of Soil Vapor Extraction (SVE)System

    , M.Sc. Thesis Sharif University of Technology Jangodaz, Elnaz (Author) ; Sayf Kordi, Ali Akbar (Supervisor) ; Alaiee, Ebrahim (Supervisor) ; Tasharrofi, Saiedeh (Co-Advisor)
    Abstract
    Volatile organic compounds are major cause of air pollution. In this work, Nano porous material named MIL-101(Fe), MIL-53(Fe), MIL-101(Fe) and MIL-88(Fe) as an adsorbent for the removal of ethyl benzene have been synthesized hydrothermally. The materials were characterized by Fourier-transform infrared (FT-IR) spectroscopy, Surface Analysis Systems (ASAP), and x-ray diffraction (XRD) analysis. Adsorption isotherms of ethyl benzene on the materials were measured experimentally in case of 0-1000ppm concentration of ethyl benzene in air and pressure 1 atmosphere. The mixture of air and VOC (ethyl benzene) with concentration of 100, 250, 500 and 1000 ppm and flow rate of 400, 1030, 1525 and 2025... 

    Modeling of Ground-Level Ozone Concentrations in Tehran using CMAQ Model

    , M.Sc. Thesis Sharif University of Technology Hossein Nia, Bardia (Author) ; Arhami, Mohammad (Supervisor)
    Abstract
    Every year, air pollution is causing immense harm to humans and the environment. To cause Air pollution, several factors are involved. Among these are the sources of emissions such as factories, power plants and Cars, meteorological factors such as temperature and wind speed and geographical conditions such as altitude, postal and looming around the area, land slope and soil type region. The aim of this study is to identify factors that affect the ozone concentration in Tehran, which could help identifying other secondary pollutants. For this purpose, a combination tailored to the geography of Tehran using CMAQ-WRF-SMOKE-made programs. This model includes four intervals each of which lasting... 

    Removal of Volatile Chlorinated Compounds (TCE,PCE) from Groundwater with Nanostructure of NZVI

    , M.Sc. Thesis Sharif University of Technology Ghasemipoor, Amir (Author) ; Bastani, Darioush (Supervisor) ; Seifkordi, Ali Akbar (Supervisor) ; Samiee, Leila (Supervisor) ; Dastgheib, Mohammad Mehdi (Co-Advisor)
    Abstract
    In recent years, the reductive dehalogenation of the chlorinated hydrocarbons using nanoscale zerovalent iron (nZVI) represents a promising approach for underground remediation. Regarding commercialization of this technique, instability and unknown nature of nZVI particle are still challenging tasks that should be considered.
    In the current work, Nanoscale zero-valent iron (nZVI) and palladized iron (Pd/Fe) bimetallic particles were synthesized and employed to react with chlorinated compound (PCE) in water to investigate its degradation behaviors. The results show that the reactant ratio, stabilizer amount and temperature are the main parameters with the considerable effect on PCE... 

    Emission Estimation for Volatile Organic Compounds (VOCs) form Evaporation Ponds in the Upstream Oil and Gas Industry

    , M.Sc. Thesis Sharif University of Technology Hadivi, Pouya (Author) ; Arhami, Mohammad (Supervisor)
    Abstract
    This study aims to estimate the emission rate of Volatile Organic Components (VOCs) and hazardous air pollutants from the surface of evaporation ponds in oil and gas upstream industries. With respect to the irrecoverable consequences of such emissions, the emission of air pollutants in the oil and gas upstream industries are alarming. Hence, estimation of the pollutants’ emission and surface pollution monitoring are needed for controlling and decreasing of air pollutants in oil and gas upstream industries and also presenting and performing suitable and efficient solutions. The studied ponds in this research include 4 ponds in the oil and gas upstream industries which have been used for... 

    in Partial Fulfilment of the Requirements for the Degree of Master of Engineering Faculty of Civil Engineering, Department of Water and Environmental Engineering Sharif University of Technology

    , M.Sc. Thesis Sharif University of Technology Rezaee, Ehsan (Author) ; Arhami, Mohammad (Supervisor) ; Abrishamchi, Ahmad (Co-Advisor)
    Abstract
    Oil and gas industries are always considered as one of the most polluting industries in the world. Many pollutants are emitted from the industry into the environment every year. Equipment’s leak and flaring off additional gases produced by various processes of oil and gas production are the main sources of waste in these industries. In order to control these hazardous wastes, it is necessary to provide effective solutions and make appropriate decisions so policymakers will be able to implement policies in order to reduce the emissions of air pollutants. In order to reduce the emissions, it is necessary to conduct the correct and reliable methods and have sufficient information about the... 

    Optimization and Modification of the Nanostructures Adsorbent for Reduction voc in Flue Gas (Benzene, Toluene, Xylene, Ethyl Benzene)

    , M.Sc. Thesis Sharif University of Technology Azaribeni, Adel (Author) ; Sayf Kordi, Ali Akbar (Supervisor) ; Mahdyarfar, Mohammad (Supervisor) ; Tasharrofi, Saiedeh ($item.subfieldsMap.e)
    Abstract
    In this study, In order to reduce volatile organic component (benzene, toluene, xylene and ethyl benzene) some appropriate nanostructures were used. First the appropriate nano structures were identified, then modified and optimized and finally characterized by XRD, SEM, ASAP. Appropriate nano adsorbent such as nano active carbon, single wall and multi wall nano carbon tubs , nano fiber carbon, graphene oxide, aluminum oxide particles, nano-zinc oxide , titanium oxide particles, 13x zeolite and extruded nano carbon tubes, were prepared and optimized, than evaluated from perspective of the crystal structure, surface area and porosity. nano active carbon, single wall and multi wall nano carbon... 

    Fabrication of Nano Sensor for Detecting H2S

    , M.Sc. Thesis Sharif University of Technology Bastani, Bahar (Author) ; Soltanieh, Mohammad (Supervisor) ; Rashidi, Alimorad (Supervisor) ; Izadi Yazdan Abadi, Nosrat (Co-Advisor)
    Abstract
    Due production and use of large amount of chemical and emissions of pollutants in air, detection and control of these compounds are necessary. One of the common methods to detect these pollutants in the ambient is using metal oxide semiconductor sensors. However, these types of sensors suffer from low selectivity toward a certain compound in the mixture of different gas components. In this study, the object was to investigate the effect of different amount of CNTs on performance of tin oxide to improve their selectivity for detection of 50 ppm of hydrogen sulfide at low temperature. To perform the study, nanoparticles of pure tin oxide and SnO2 base hybrids containing 0.25wt%, 0.5wt%, 2.5wt%... 

    Design of a Portable Dilution Sampling System for Measuring Fine Particle and Vocs Emissions from Vehicles and Stack in Iran

    , M.Sc. Thesis Sharif University of Technology Geraei, Hosna (Author) ; Hosseini, Vahid (Supervisor)
    Abstract
    Combustion sources such as diesel vehicles are the most of the particular matter sources in ambient air. Near the tailpipe, exhaust is very hot, condense and have high velocity. This properties cause to need special methods and instrument to collect them. Numerously of combustion sources will emitted the VOCs, IVOCs, and SVOCs. This component mixed with ambient air and changing to particle phase from gas phase. Reaction between nitrogen oxides with sunlight cause to damage ozone layer and tissue in long time. Furthermore, breathe of VOCs gases cause to eye irritation, gastrointestinal effects, Damage to the nervous system, headache, dizziness, fatigue, vibration and loss of organ... 

    Modeling Secondary Organic Aerosol Formation from Fuel Combustion and Evaporation, Using Box Model and Primary and Secondary Source Apportionment of Fine Particulate Matter, Using PMF Receptor Model

    , Ph.D. Dissertation Sharif University of Technology Esmaeilirad, Sepideh (Author) ; Hosseini, Vahid (Supervisor) ; Shamloo, Amir (Co-Supervisor)
    Abstract
    Focus of the present research is on the study and cognition of sources of carbonaceous compounds present in PM2.5, particularly secondary organic carbon. For this purpose, two different approaches were used. The first approach investigates the SOA formation from internal combustion engines exhaust and unburned fuel (bottom-up approach). The second approach studies the contribution of each of the primary and secondary sources to PM2.5 mass, whereby secondary organic carbon share is obtained (top-down approach). Modeling SOA formation from vehicles exhaust showed that diesel vehicles have greater SOA formation potential than gasoline vehicles, due to large amount of S/IVOCs present in their... 

    Design and Implementation of a 1-2 GHz Ultra Low Phase Noise Phase Locked Loop using SPD

    , M.Sc. Thesis Sharif University of Technology Abedanzadeh, Amir Hossein (Author) ; Banaei, Ali (Supervisor)
    Abstract
    In this thesis first of all we investigate phase noise and it's generation factors. Then we design and implement an ultra low phase noise oscillator. To do this, an ultra low phase noise oscillator which is tunable in 1-2GHz with 100MHz steps will be designed. The outline of the circuit is as follows: at the first we design a VCO which is ultra low phase noise and mechanically tunable in 1-2GHz by means of rotation of a handle. Then a phase locked loop will be built with the help of an ultra low phase noise OCXO at 100MHz and one SPD1 which generates harmonics of OCXO's output frequency. For the next, design and implementation of a 1.6GHz oscillator with fixed output frequency has been done.... 

    Experimental Study of Formaldehyde Decomposition Using a Plasma - Catalyst Hybrid Reactor as a Potential Voc Removal Technique

    , M.Sc. Thesis Sharif University of Technology Nemati Tamar, Amin (Author) ; Hamzeh Louyan, Tayyebeh (Supervisor) ; Khani, Mohammad Reza (Supervisor)
    Abstract
    Volatile organic compounds (VOCs) has harmful environmental and health effects and appropriate processes are needed to remove them from industrial and indoor environments. In this study, formaldehyde as one of the most toxic VOCs was investigated. Various methods have been developed to remove formaldehyde, however due to the to their low removal efficiencies, secondary pollution, and low energy efficiency, development of alternative methods will be beneficial. In recent years, the use of a combination of non-thermal plasma and catalyst technologies, called plasma-catalytic hybrid reactors, has provided significant results in the fields of chemical synthesis and removal of pollutants. In the... 

    Design and Construction the Low Cost Catalyst for Removal of VOCs from Air

    , M.Sc. Thesis Sharif University of Technology Fahimirad, Mahdi (Author) ; Shaygan Salek, Jalaloddin (Supervisor)
    Abstract
    Nowadays, increased pollutants in the air threat the society health condition and Volatile Organic Compounds (VOCs) are the most hazardous ones among them. In the present study, catalytic oxidation as a prominent of the VOCs removal method from air, have attracted attentions due to high removal efficiency and suitable kinetic reaction. Because of its common industrial applications, toluene is intended to be eliminated through a low cost carbon supported catalyst which is synthesised in the laboratory. Construction method, carbonaceous support type, catalyst metal and its load, calcination temperature and time are among influencing design characteristics. A combination of Impregnation and... 

    A core–shell titanium dioxide polyaniline nanocomposite for the needle-trap extraction of volatile organic compounds in urine samples

    , Article Journal of Separation Science ; Volume 40, Issue 9 , 2017 , Pages 1985-1992 ; 16159306 (ISSN) Banihashemi, S ; Bagheri, H ; Sharif University of Technology
    Wiley-VCH Verlag  2017
    Abstract
    We synthesized a titanium dioxide–polyaniline core–shell nanocomposite and implemented it as an efficient sorbent for the needle-trap extraction of some volatile organic compounds from urine samples. Polyaniline was synthesized, in the form of the emeraldine base, dissolved in dimethyl acetamide followed by diluting with water at pH 2.8, using the interfacial polymerization method. The TiO2 nanoparticles were encapsulated inside the conducting polymer shell, by adapting the in situ dispersing approach. The surface characteristics of the nanocomposite were investigated by Fourier transform infrared spectrometry, scanning electron microscopy, and transmission electron microscopy. After... 

    A selective chemiresistive sensor for the cancer-related volatile organic compound hexanal by using molecularly imprinted polymers and multiwalled carbon nanotubes

    , Article Microchimica Acta ; Volume 186, Issue 3 , 2019 ; 00263672 (ISSN) Janfaza, S ; Banan Nojavani, M ; Nikkhah, M ; Alizadeh, T ; Esfandiar, A ; Ganjali, M. R ; Sharif University of Technology
    Springer-Verlag Wien  2019
    Abstract
    A chemiresistive sensor is described for the lung cancer biomarker hexanal. A composite consisting of molecularly imprinted polymer nanoparticles and multiwalled carbon nanotubes was used in the sensor that is typically operated at a voltage of 4 V and is capable of selectively sensing gaseous hexanal at room temperature. It works in the 10 to 200 ppm concentration range and has a 10 ppm detection limit (at S/N = 3). The sensor signal recovers to a value close to its starting value without the need for heating even after exposure to relatively high levels of hexanal  

    Efficient post-plasma catalytic degradation of toluene via series of Co–Cu/TiO2 catalysts

    , Article Research on Chemical Intermediates ; Volume 48, Issue 10 , 2022 , Pages 4227-4248 ; 09226168 (ISSN) Ayub, K. S ; Zaman, W. Q ; Miran, W ; Ali, M ; Abbas, Z ; Mushtaq, U ; Shahzad, A ; Yang, J ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Volatile organic compounds (VOCs) represent a very important class of pollutants that causes serious health effects. There is an urgent requirement to establish efficient technologies that can reduce and control VOCs. Non-thermal plasma (NTP) is an emerging technology that can decompose low concentration VOCs. However, the low efficiency and high power cost are major hindrances in its commercialization. In this work, Co–Cu with TiO2 support catalysts are prepared by using the deposition precipitation method and utilized in post-plasma catalysis for the efficient degradation of toluene selected as a model VOC. The synergistic effect of Co–Cu/TiO2 with different Co/Cu molar ratios along with... 

    First-principles study of molecule adsorption on Ni-decorated monolayer MoS2

    , Article Journal of Computational Electronics ; Volume 18, Issue 3 , 2019 , Pages 826-835 ; 15698025 (ISSN) Barzegar, M ; Berahman, M ; Asgari, R ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    The interactions between four different gas molecules (methanol, o-xylene, p-xylene and m-xylene) and Ni-decorated monolayer MoS2 were investigated by means of density functional computations to exploit its potential application as a gas sensor. The electronic properties of the Ni-decorated monolayer MoS2 and gas molecule (adsorbent–adsorbate properties) strongly depend on the Ni-decorated monolayer MoS2 structure and the molecular configuration of the adsorbate. The adsorption properties of volatile organic compound (VOC) molecules on Ni-decorated MoS2 has been studied taking into account the parameters such as adsorption energy, energy bandgap, density of states, and Mulliken charge... 

    Hexagonal core–shell SiO2[–MOYI]Cl–]Ag nanoframeworks for efficient photodegradation of the environmental pollutants and pathogenic bacteria

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Volume 29, Issue 4 , 2019 , Pages 1314-1323 ; 15741443 (ISSN) Padervand, M ; Asgarpour, F ; Akbari, A ; Eftekhari Sis, B ; Lammel, G ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Hexagonal core–shell SiO2[–MOYI]Cl–]Ag nanoframeworks were synthesized via surface modification of hexagonal silica nanoparticles prepared from perlite (EP) as a cheap and abundant raw material. The prepared samples were well characterized by X-ray diffraction powder (XRD), energy dispersive X-ray (EDX), diffuse reflectance spectroscopy (DRS), Brunauer–Emmett–Teller (BET) specific surface area analysis, fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The XRD patterns confirmed that Ag and AgCl crystalline phases were successfully loaded on the surface. The TEM images were also implied that the... 

    Estimating Volatile Organic Compound emissions from wastewater circulating aeration tanks

    , Article Scientia Iranica ; Volume 12, Issue 3 , 2005 , Pages 300-305 ; 10263098 (ISSN) Yaghmaei, S ; Rashidkhani, A ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    The need for the control of Volatile Organic Compounds (VOCs) has led engineers to modify wastewater aeration tank systems. In this research, air recirculation has been investigated as a possible VOC control strategy for these systems. A steady-state mathematical model of VOC emission rates has been developed from the fundamentals of VOC convection, volatilization and biodegradation. This model has been used to study the effect of aeration recirculation in enhancing the biodegradation of VOCs in the system, using dichloromethane as a typical VOC. A feasibility study considering plants of various sizes is needed to compare the costs and benefits of air recirculation to other VOC control...