Loading...
Search for: vossoughi--gholamreza
0.02 seconds
Total 63 records

    A Supervisory Fuzzy Force Control of CNC HEXAGLIDE Robot

    , M.Sc. Thesis Sharif University of Technology Abedi, Mohsen (Author) ; Alasti, Aria (Supervisor) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    In this paper, controlling the cutting force of an end-milling process using a supervisory fuzzy controller has been investigated. The proposed control consists of an ordinary fuzzy controller and a fuzzy supervisor. In a machining process, there are several parameters which do not contribute to the force control system directly. Therefore an ordinary fuzzy force controller is suitable when these parameter have only small amount of variations. Since in practice this assumption is not valid, then a supervisory fuzzy controller has been added to the system. The designed fuzzy supervisor, inspects the dynamic behavior of the cutting force, estimates a pre-defined ‘sensitivity’ parameter and... 

    Point to point Control of a Brachiation Robot Based on Neural Network

    , M.Sc. Thesis Sharif University of Technology Babaei, Bashir (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    • Brachiation robot is a kind of under-actuated robots. A brachiating robot is a type of a mobile arm that is capable of moving from branch to branch similar to a long-armed ape. The purpose of this thesis is control of a two link Brachiation robot. The purpose of this thesis is control of a two link Brachiation robot using neural network and geometry control. For this purpose a genetic algorithm based training Neural Network is used to produce a suitable path for the second link of the robot and then using input-output linearization method, the second link is controlled to follow the path. The simulations shows that the Nero Controller designed in this thesis is suitable. The controller can... 

    A Novel Moving Magnetic Levitation Device for 3D Manipulation of Small Objects

    , M.Sc. Thesis Sharif University of Technology Molavian Jazi, Mehdi (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    Magnetic levitation is an appropriate solution for noncontact 3D manipulation. Workspace of the previously proposed maglev systems is confined to a relatively small cube, which severely limits the application of this technology. In addition, most of the previously given mechanisms require the design and application of a subsystem in order to unify their magnetic field. In this paper, a moving magnet is proposed which results in a horizontally extendable workspace; moreover, the field unifying section is not needed since one electromagnet only is used. Further, details of the mechanism and finite element based design procedure of the magnet are presented. Dynamic equations of the system... 

    Robust Control of a Snake-like Robot with Friction Effects

    , M.Sc. Thesis Sharif University of Technology Haghshenas Jaryani, Mahdi (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    In this thesis, modeling and robust sliding mode control of a snake-like robot with holonomic constraints in tracking of desired paths such as serpenoidal motion is addressed. By considering more real conditions and holonomic constraints, the kinematic and dynamic equations of a semi active robot are obtained using Kane's method. In the next step, based on the obtained results, diverse control theory for getting ability of tracking different paths in environment with different frictions are investigated. Robust control theory is chose to design a controller that has ability of adaption robot’s motion in different environments. For this reason, Sliding Mode Control that has many applications... 

    Active Vibration Control of Constrained Industrial Manipulators Using Piezoelectric Actuator

    , M.Sc. Thesis Sharif University of Technology Mohammadi Daniali, Mohsen (Author) ; Vossoughi, Gholamreza (Supervisor) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    Nowadays, due to the advancement of robotic technologies and development of industrial robots, the robot manipulators are widely used for automation of various manufacturing processes, such as finishing processes. In these applications, the contact has to be made between robot end-effector and environment. Therefore, control of interaction force in the constrained manipulators is an important demand. On the other hand, due to use of gear box and belts for energy transmission in robot joints, robot manipulators have flexible joints. The vibration, generated due to the interaction force and robot joint flexibility, can deteriorate surface roughness in automated finishing processes. In order to... 

    Bilateral Control of a Laparoscopic Tele-Surgical Workstation with Haptic Feedback

    , M.Sc. Thesis Sharif University of Technology Alambeigi, Farshid (Author) ; Vossoughi, Gholamreza (Supervisor) ; Farahmand, Farzam (Supervisor)
    Abstract
    Laparoscopic surgery which is categorized under Minimal Invasive Surgery, has many advantages over conventional open surgery. Despite the beneficial effect of this method on patients, surgeons suffer difficulties in utilizing the method. Robotic surgery has been constituted as the answer to remove the difficulties yet retain the advantages.
    In the so-called robotic surgery, the tool is handed to a robotic arm, i.e., the slave robot, which is installed and positioned at the bed side. The surgeon sits before a comfortable console and uses a joystick-like robot, i.e., the master robot, to manipulate the slave robot. The vision is also provided by a robotic camera holder and shown in a... 

    Agent Base Control of a Robotic Swarm with Sensor Noise Effects

    , M.Sc. Thesis Sharif University of Technology Mahpour, Aidin (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    The main objective of this project is to investigate modeling for a robotic swarm with suitable sensors and to analyze effect of sensory noise on the control and unity of the swarm. This project is an extension of analytical study done by S. Etemadi, A. Alasty and G. Vossoughi in Sharif University of technology. The flocking frame assumed to have a leader robot that controls over all behavior of the swarm made of agents’ robots with limited equipments and low intelligence that only obey some basic attraction and repulsion laws that will be explained. As an initial step of the analysis, we investigate proper physical model, sensors and navigation systems suitable to the model. Next, the... 

    Variable Impedance Control of the Lower Limb Exoskeleton

    , Ph.D. Dissertation Sharif University of Technology Taherifar, Ali (Author) ; Vossoughi, Gholamreza (Supervisor) ; Selk Ghafari, Ali (Co-Advisor)
    Abstract
    Todays, the exoskeleton is known as a practical device for use in robotic rehabilitation and elderly assistance and has attracted the attention of many researchers. Impedance control is the most widely recognized control strategy in research on exoskeletons. Impedance control can properly handle soft interaction of robots with the environment. Optimal target impedance selection can increase the performance of the overall system and guarantee the stability. The main objective of this research was to introduce a variable impedance control system and verifying the presented control system on an exoskeleton. In this research, an exoskeleton with 4 active DoF and 8 semi-passive DoF is designed... 

    Impedance Control of a Knee Rehabilitation Exoskeleton Using Robust Adaptive Control

    , M.Sc. Thesis Sharif University of Technology Torabi, Mansour (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    The present study deals with designing controller for Therapeutic Exercise Robots which belongs to larger group namely Rehabilitation robots. Therapeutic exercise robots are often realized in shape of exoskeleton robots. The main line of present research is involved with, designing controller for lower limb therapeutic exercise robots and offering and implementing technical rehabilitation ideas. Firstly, in order to have a reliable position-control, considering practical limitations (e.g. system uncertainties), a robust adaptive control has been designed. Adaptive control can deals with parameters uncertainties and covering unstructured uncertainties (e.g. disturbance and noise) can be... 

    Impedance Control of Flexible Base Moving Manipulators

    , Ph.D. Dissertation Sharif University of Technology Salehi, Mahdi (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    In this paper, the general research of impedance control is addressed for a robotic manipulator with a moving flexible base. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base moving manipulators (FBMM) is rather new and is being considered. The dynamic of manipulator is decomposed into slow and fast dynamics using singular perturbation method. New sliding mode impedance control method (SMIC), using an element on the end effector is proposed for high precision impedance control of FBMM. The sliding mode impedance control method as a robust impedance control law is derived for the... 

    Control, Scaling and Stability Analysis of Teleoperated One-Dimensional Micro/Nano-Manipulation Systems

    , M.Sc. Thesis Sharif University of Technology Motamedi, Mohammad (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    In this paper, a novel control approach for one-dimensional bilateral teleoperated nanomanipulation system is proposed. While manipulating objects with a nanomanipulator, real time visual feedback is not available. So, force feedback is used to compensate for the lack of visual information. Since nanometer scale forces are dominated by surface forces instead of inertial forces as in macro world, scaling of nanoforces is one of the major issues of teleoperation system. The Hertz elastic contact model is used to model the interactions between the slave robot and the environment. The proposed framework uses the simple proportional derivative control, i.e., the master and slave robots are... 

    High Precision Localization by Optical Flow and INS Sensor data Fusion

    , M.Sc. Thesis Sharif University of Technology Azizi, Arash (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    Robot navigation and guidance is an important issue in robotic. Navigation by itself includes localization, path planning and guidance. For having a successful navigation it is necessary to succeed in all of those parts. The localization precision as basic part of localization is important and having more accurate information of robot position is important. Recently, sensors which use optical flow technic and are widely used in optical mouses are so common and they are able to measure displacement with resolution of 3 to 63 micron. In this research, a localization method for micro robot localization based on optical flow and INS sensor data fusion is presented.
    Two data fusion method... 

    Modeling and Control a Flexible Large Deformation Beam Actuated by Some SMA Actuators

    , Ph.D. Dissertation Sharif University of Technology Zakerzadeh, Mohammad Reza (Author) ; Sayyaadi, Hassan (Supervisor) ; Vossoughi, Gholamreza (Co-Advisor)
    Abstract
    Smart structures are the combination of structure, smart material, electronics and control technologies. Changing the shape of the structures by smart actuators is one of the most important applications of Shape Memory Alloy (SMA) in these structures. Having used these actuators, we can effortlessly and continuously deform and reshape the structures. Nevertheless, working with SMA actuated smart structures has one obvious drawback that is their hysteretic and nonlinear behavior, making modeling and control of these structures complex. Another difficulty in the control of smart structures is their great sensitivity to the actuating force that reduces the controllability of these structures.... 

    Velocity Control of an A-shaped Microrobot with Nonlinear and Hybrid Dynamic

    , M.Sc. Thesis Sharif University of Technology Moradian, Hossein (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    Microrobots are generally suitable for implementation of certain works in miniature dimensions such as micro assembly, microsurgery, adaption with small animals and so on. In this way, there is special position for mobile microrobots capable of moving in the range of more than theirs dimensions. Achivieng to high resolution and high speed locomotion are the challenging issues in the microrobot’s development in which much effort has been done.The goal of this project is dynamic modeling and velocity control of an A-shaped microrobot with with nanometric locomotion. During this project, first the dynamic modeling of microrobot is investigated and simplified based on the previous studies.... 

    Modeling and Control of a Carangiform Fish Robot with Experimental Validation of the Forces Obtained by Large Amplitude Elongated Body Theory of Lighthill

    , M.Sc. Thesis Sharif University of Technology Khaghani, Mehran (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    Modeling and Control are fundamental issues for fish robots, which can play basic roles in design, optimization, fabrication, and eventually utilization of them. A review on the literature reveals the shortage of an analytical closed form model with little simplifications and high precision, and also control works based on such models. Studying LAEBT theory, it is shown that this theory is suitable for determining the forces produced due to the tail movements considered in the present work, and then it is used to determine the forces. Experimental investigations by means of the setup made for this purpose showed that the obtained equations for the forces have got acceptable precision.... 

    Modeling and Control of a Fish Robotic System Using Hardware in the Loop Methodology

    , M.Sc. Thesis Sharif University of Technology Zeinoddini Meymand, Sajjad (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    In the present study, an adaptive sliding mode control method was employed to control a fish robotic system using the method of hardware in the loop. Following the introduction of the nonlinear model for the robot, elongated body theory, suggested by Lighthill, was used to analyze fish movements. Lighthill’s theory inspired from slender body theory in aerodynamics scope could be viable to exercise upon the carangiform mode of swimming. By simplifying Lighthill’s equations in planar motion of fish robot, the number of degrees of freedom exceeds the number of the control variables. In view of the fact that the presented model is an under-actuated model, there exist some parametric and... 

    Hydrodynamic Modeling of the Tail of a Thunniform Robofish

    , M.Sc. Thesis Sharif University of Technology Karimzadeh, Mahdi (Author) ; Vossoughi, Gholamreza (Supervisor) ; Seif, Mohammad Saeed (Co-Advisor) ; Firoozabadi, Bahar (Co-Advisor)
    Abstract
    Underwater robots are broadly used in oceanography to explore ocean environments,inside inspection of pipes, and also to provide security at maritime boundaries. To design an underwater autonomous robot, it is compulsive to take advantage of a high efficient propulsion mechanism to lengthen the tour time span. Since fish-like propulsion mechanisms have presented higher efficiency comparing other mechanisms, they have been paid a lot of attention.In the present research, the hydrodynamic of a thunniform fish robot is analyzed under some reasonable simplifications. Based on the results achieved from this study, closed expressions are developed to predict the steady mean velocity and the... 

    Extended Nonlinear Modeling and Stability Analysis of the Peripheral Milling Process

    , Ph.D. Dissertation Sharif University of Technology Moradi, Hamed (Author) ; Vossoughi, Gholamreza (Supervisor) ; Movahhedy, Mohammad Reza (Supervisor)
    Abstract
    In this thesis, an extended nonlinear model of peripheral milling process (2D) is presented. For the first time, cutting forces are described through a complete third order polynomial function of the axial depth of cut. Also, cubic nonlinearity is considered for the structural stiffness as a function of tool tip displacement. To complete the model, process damping and tool wear effects are also considered. A set of experiments including modal tests to determine natural frequencies and structural damping ratios; and also cutting force measurements at different feed rates to determine nonlinear cutting force coefficients, are carried out. Also, measurement of critical axial depth of cut at... 

    Model-Based Fault Diagnosis of the Gas Exchange System in a Turbocharged Gasoline Engine

    , Ph.D. Dissertation Sharif University of Technology Salehi, Rasoul (Author) ; Alasty, Aria (Supervisor) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    Proper operation of a spark ignition engine is required by comfort demands of a vehicle driver and governmental legislations. Therefore it is essential to monitor, within an online technique, the engine and detect any fault which disrupts its operation. The gas exchange path (including the intake and exhaust subsystems) is an important part of turbocharged engines responsible for accurate control of both engine power and emissions. Monitoring the path for fault detection and isolation (FDI) has been always demanded due to many failures it may face since the turbocharger exasperates the harsh working conditions for components involved in the path. This paper presents a novel model-based... 

    Prediction-based Control for Mitigation of Axial-torsional Vibrations In a Distributed Drill-String System in the Presence of Parametric Uncertainties

    , M.Sc. Thesis Sharif University of Technology Tashakori, Shabnam (Author) ; Vossoughi, Gholamreza (Supervisor) ; Zohoor, Hassan (Supervisor)
    Abstract
    Drill strings are subjected to complex coupled dynamics. Therefore, accurate dynamic modeling, which can represent the physical behavior of real drill strings, is of great importance for system analysis and control. The most widely used dynamic models for such systems are the lumped element models which neglect the system distributed feature. In this thesis, an infinite-dimensional model for the vibrational dynamics of the drill-string, called neutral-type time delay model, is modified to investigate the coupled axial-torsional vibrations in drill strings. This model is derived directly from the distributed parameter model by employing the d’Alembert method. Coupling of axial and torsional...