Loading...
Search for: wall-jets
0.011 seconds

    Separation Control Using Quasi-radial Wall Jets: A Numerical Investigation

    , M.Sc. Thesis Sharif University of Technology Hajipour, Majid (Author) ; Javadi, Khodayar (Supervisor)
    Abstract
    Present research focuses on providing a reasonable solution for separation control through arrays of discrete wall jets. In this thesis, quasi-radial wall jet actuators have been introduced and theirs application in separation control (boundary layer control) have been investigated for the first time. This study includes two phases. The first phase is dedicated to investigation of physics and functional nature of wall jet actuators. In this phase, using numerical simulations, wall jet actuators in different situations have been studied and it was shown that arrays of quasi-radial jets have better performance than arrays of three-dimensional jets in creating a combine two-dimensional wall... 

    Introducing of Arc-Shaped Wall-Jet in Boundary Layer Flow Control Application in Film Cooling-Numerical Simulations

    , M.Sc. Thesis Sharif University of Technology Aftabsavar, Ali (Author) ; Javadi, Khodayar (Supervisor)
    Abstract
    In this research special type of jets those calls Arc-Shape Jets are studied. The meaning of this research is an effort to introduce this types of jets as a new method to film-cooling approach. In the primary section, the fitness of this scheme on a flat plate is studied. After this section, according to the results, this method is implemented on a turbine blade surface. According to the results, this method of film-cooling has suitable effectiveness in lateral direction, this has a reason of radially injection of the coolant jet. The main feature of this concept is operating by mass flow rate of much lower than other schemes. So that in a regular injection of a 45 degrees of actuator arc,... 

    Film Cooling Computational Simulation of the Trailing Edge a Gas Turbine Blade, Using Quasi-Radial Jets–Impact of Jet Height

    , M.Sc. Thesis Sharif University of Technology Solati, Arya (Author) ; Taeibi Rahni, Mohammad (Supervisor) ; Javadi, Khodayar (Supervisor)
    Abstract
    The limitations of metals in tolerating thermal stresses is one of the main obstacles in increasing temperature of combustion products. In addition, strong desires to use higher temperatures than are allowed for metals, have led to use of different cooling methods for protecting surfaces adjacent to hot gases. Previous valid studies show that more than 25% of research in the field of gas turbine is related to their blades cooling. On the other hand, one of the very important methods of cooling such surfaces is film cooling. The results of this and previous researches conducted by the team of this thesis’ supervisors can for instance help designers to predict more suitable positions for... 

    Numerical Investigation on the Effects of Guide Vanes in Quasi-Radial Wall Jet for Improvement of Separation Control

    , M.Sc. Thesis Sharif University of Technology Rasaienejad, Mostafa (Author) ; Javadi, Khodayar (Supervisor)
    Abstract
    The aim of this study was the performance analysis of the effect of guide vanes in a quasi-radial wall jet to improve the flow separation control on the wing composed of NACA4415. In order to achieve this goal, first, by examining two geometries of "quasi-radial wall jet" and "arced-shape wall jet", the effect of jet's internal flow on separation control improvement has been studied and arced-shape wall jet has been chosen as a suitable replacement for the uniform quasi-radial wall jet, which has changed the radial velocity distribution of the jet output from uniform to non-uniform. Also, increasing the radial component of the jet output velocity and improving the separation control have... 

    Quasi-radial wall jets as a new concept in boundary layer flow control

    , Article Journal of Turbulence ; Volume 19, Issue 1 , 2018 , Pages 25-48 ; 14685248 (ISSN) Javadi, K ; Hajipour, M ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    This work aims to introduce a novel concept of wall jets wherein the flow is radially injected into a medium through a sector of a cylinder, called quasi-radial (QR) wall jets. The results revealed that fluid dynamics of the QR wall jet flow differs from that of conventional wall jets. Indeed, lateral and normal propagations of a conventional three-dimensional wall jet are via shear stresses. While, lateral propagation of a QR wall jet is due to mean lateral component of the velocity field. Moreover, discharged Arrays of conventional three-dimensional wall jets in quiescent air lead to formation of a combined wall jet at large distant from the nozzles, while QR wall jet immediately spread in... 

    Particle trajectory study in submerged flows with baffles using ν̄2-f and k-ε turbulence models

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 132, Issue 5 , 2010 , Pages 0511051-05110510 ; 00982202 (ISSN) Mehdizadeh, A ; Firoozabadi, B ; Sherif, S. A ; Sharif University of Technology
    Abstract
    In this paper, the structure of a wall jet deflected by a baffle along with the trajectory of particles has been studied. This baffle is used to produce a stable deflected surface jet, thereby deflecting the high-velocity supercritical stream away from the bed to the surface. An elliptic relaxation turbulence model (ν̄2-f model) has been used to simulate this submerged flow. In recent years, the ν̄2- f turbulence model has become increasingly popular due to its ability to account for near-wall damping without use of damping functions. In addition, it has been proven that the ν̄2- f model is superior to other Reynolds-averaged Navier-Stokes (RANS) methods in many flows where complex flow... 

    Particle trajectory study in submerged flows with baffles using v 2̄ - f and k -ε turbulence models

    , Article 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 7 January 2008 through 10 January 2008 ; 2008 ; 9781563479373 (ISBN) Mehdizadeh Momen, A ; Sherif, A ; Firoozabadi, B ; Sharif University of Technology
    2008
    Abstract
    In this paper, the structure of a wall jet deflected by a baffle along with the trajectory of particles has been studied. This baffle is used to produce a stable deflected surface jet, thereby deflecting the high-velocity supercritical stream away from the bed to the surface. An elliptic relaxation turbulence model (v2̄ - f model) has been used to simulate this submerged flow. During the last few years, the v2̄ - f turbulence model has become increasingly popular due to its ability to account for near-wall damping without use of damping functions. In addition, it has been proven that the v2̄ - f model is superior to other RANS methods in many fluid flows where complex flow features are... 

    Numerical simulation of nano-carbon deposition in the thermal decomposition of methane

    , Article International Journal of Hydrogen Energy ; Volume 33, Issue 23 , December , 2008 , Pages 7027-7038 ; 03603199 (ISSN) Homayonifar, P ; Saboohi, Y ; Firoozabadi, B ; Sharif University of Technology
    2008
    Abstract
    A comparison of various hydrogen production processes indicates that the thermal decomposition of methane (TDM) provides an attractive option from both economical and technical points of view. The main problem for this process is the deposition of the nano-carbon particles on the reactor wall (or catalyst surface). This research concentrates on the numerical simulation of the TDM process without use of a catalyst to find a technique that decreases the carbon accumulation in a tubular reactor. In this model, the produced carbon particles are tracked with the Lagrangian method under thermophoretic, Brownian, van der Waals, Basset, drag, lift, gravity, pressure and virtual mass forces. In... 

    Igniter jet dynamics in solid fuel ramjets

    , Article Acta Astronautica ; Volume 64, Issue 2-3 , 2009 , Pages 166-175 ; 00945765 (ISSN) Tahsini, A. M ; Farshchi, M ; Sharif University of Technology
    2009
    Abstract
    The dynamics of a two dimensional plane jet injected at the base of a step, parallel to the wall, in backward facing step flow geometry is numerically studied. The objective of this work is to gain insight into the dynamics of the igniter flow field in solid fuel ramjet motors. Solid fuel ramjets operate by ingestion of air and subsequent combustion with a solid fuel grain such as polyethylene. The system of governing equations is solved with a finite volume approach using a structured grid in which the AUSM+ scheme is used to calculate the convective fluxes. The Spalart and Allmaras turbulence model is used in these simulations. Experimental data have been used to validate the flow solver... 

    Comparison of 2-D turbulent particle laden density current and wall jets

    , Article 2006 ASME Joint U.S.- European Fluids Engineering Division Summer Meeting, FEDSM2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 1 SYPMOSIA , 2006 , Pages 1763-1770 ; 0791847500 (ISBN); 9780791847503 (ISBN) Hormozi, S ; Firoozabadi, B ; Ghasvari Jahromi, H ; Afshin, H ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    Dense underflows are continuous currents, which move down the slope due to the fact that, their density are heavier than ambient water. In turbidity currents the density differences arises from suspended solids. Vicinity of the wall make density currents and wall jets similar in some sense but Variation of density cause this flows more complex than wall jets. An improved form of 'near-wall' k-ε turbulence model is chosen which preserve all characteristics of both density and wall jet currents and a compression is made between them. Then the outcomes from low Reynolds number k-ε model is compared with v̄2 - f model which show similarity. Also results show good agreement with experimental data...