Loading...
Search for: water-content
0.013 seconds
Total 37 records

    Experimental Study of the Effects of Compaction Water Content on Dynamic Properties of Babolsar Sand under Anisotropic Loading

    , M.Sc. Thesis Sharif University of Technology Khorami, Shahriar (Author) ; Jafarzadeh, Fardin (Supervisor)
    Abstract
    In many of the geotechnical engineering projects, such as construction of embankments and roads, soil is compacted with different water contents. Difference in compaction water content leads to different dynamic behaviors under cyclic loadings like earthquake and traffic. On the other hand, the magnitude and the direction of principal stresses on soil element, affect the dynamic response of the soil. The main objective of this research is to study the effects of compaction water content on dynamic properties of soil in anisotropic loading conditions. Therefore, the dynamic parameters of Babolsar sand, including shear strain amplitude, shear modulus and damping ratio under induced anisotropic... 

    Prediction of water content of sour and acid gases

    , Article Fluid Phase Equilibria ; Volume 299, Issue 2 , December , 2010 , Pages 171-179 ; 03783812 (ISSN) Zirrahi, M ; Azin, R ; Hassanzadeh, H ; Moshfeghian, M ; Sharif University of Technology
    2010
    Abstract
    Estimating the feasibility of acid gas geological disposal requires the knowledge of the water content of the gas phase at moderate pressures and temperatures (typically below 50MPa, below 380K) and up to 6mol NaCl. In this paper, a non-iterative model is developed to predict the water content of sour and acid gases at equilibrium with pure water and brine. This model is based on equating the chemical potential of water and using the modified Redlich-Kwong equation of state to calculate the fugacity of the gas phase. The water content of pure CH4, CO2 and H2S are represented with average absolute deviations of less than 3.36, 7.04 and 8.4%, respectively. Experimental data of the water... 

    Optimization of parameters for synthesis of mfi nanoparticles by taguchi robust design

    , Article Chemical Engineering and Technology ; Volume 33, Issue 6 , 2010 , Pages 902-910 ; 09307516 (ISSN) Torkman, R ; Soltanieh, M ; Kazemian, H ; Sharif University of Technology
    2010
    Abstract
    MFI-type zeolite was successfully synthesized by hydrothermal crystallization of clear synthesis mixtures. A statistical experimental design method (the Taguchi method with an L8 orthogonal array) was implemented to optimize the experimental conditions for the preparation of MFI nanocrystals with respect to particle size and distribution as the desirable properties. In the Taguchi experimental design, crystallization temperature, water content, template/silica molar ratio, aluminum content, as well as the presence of alkaline cations were chosen as significant parameters affecting the properties. It was shown that water and aluminum content of the synthesis solution were the most important... 

    The effect of fuel cell operational conditions on the water content distribution in the polymer electrolyte membrane

    , Article Renewable Energy ; Volume 36, Issue 12 , December , 2011 , Pages 3319-3331 ; 09601481 (ISSN) Tavakoli, B ; Roshandel, R ; Sharif University of Technology
    2011
    Abstract
    Models play an important role in fuel cell design and development. One of the critical problems to overcome in the proton exchange membrane (PEM) fuel cells is the water management. In this work a steady state, two-dimensional, isothermal model in a single PEM fuel cell using individual computational fluid dynamics code was presented. Special attention was devoted to the water transport through the membrane which is assumed to be combined effect of diffusion, electro-osmotic drag and convection. The effect of current density variation distribution on the water content (λ) in membrane/electrode assembly (MEA) was determined. In this work the membrane heat conductivity is considered as a... 

    Experimental investigation of rheological and morphological properties of water in crude oil emulsions stabilized by a lipophilic surfactant

    , Article Journal of Dispersion Science and Technology ; Volume 34, Issue 3 , Feb , 2013 , Pages 356-368 ; 01932691 (ISSN) Sadeghi, M. B ; Ramazani, S. A. A ; Taghikhani, V ; Ghotbi, C ; Sharif University of Technology
    2013
    Abstract
    Rheological behavior of two crude oils and their surfactant-stabilized emulsions with initial droplet sizes ranging from 0.5 to 75 μm were investigated at various temperatures under steady and dynamic shear testing conditions. In order to evaluate the morphology and Stability of emulsions, microscopic analysis was carried out over three months and average diameter and size distribution of dispersed droplets were determined. The water content and surfactant concentration ranged from 10 to 60% vol/vol and 0.1 to 10% wt/vol, respectively. The results indicated that the rheological properties and the physical structure and stability of emulsions were significantly influenced by the water content... 

    Comparison of using formaldehyde and carboxy methyl chitosan in preparation of Fe3O4 superparamagnetic nanoparticles-chitosan hydrogel network: Sorption behavior toward bovine serum albumin

    , Article Process Safety and Environmental Protection ; Volume 102 , 2016 , Pages 119-128 ; 09575820 (ISSN) Sadeghi, M ; Hanifpour, F ; Taheri, R ; Javadian, H ; Ghasemi, M ; Sharif University of Technology
    Institution of Chemical Engineers 
    Abstract
    A novel and cost effective method of bio-separation developed recently is magnetic separation technology. In this study, super paramagnetic Fe3O4 nanoparticles are used for separation of bovine serum albumin (BSA) protein from plasma/serum samples at optimized conditions. The synthesis of chitosan hydrogel networks by two variant approaches that involve (1) crosslinking of chitosan with formaldehyde and (2) formation of carboxy methyl chitosan mediated complex, was investigated and the percent of gelation, swelling ratio and equilibrium water content were calculated. The results revealed the formation of better quality hydrogel from the first approach. In step 1, to quantify the BSA... 

    Applying ultrasonic fields to separate water contained in medium-gravity crude oil emulsions and determining crude oil adhesion coefficients

    , Article Ultrasonics Sonochemistry ; Volume 70 , 2021 ; 13504177 (ISSN) Sadatshojaie, A ; Wood, D. A ; Jokar, S. M ; Rahimpour, M. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Separating produced water is a key part of production processing for most crude oils. It is required for quality reasons, and to avoid unnecessary transportation costs and prevent pipework corrosion rates caused by soluble salts present in the water. A complicating factor is that water is often present in crude oil in the form of emulsions. Experiments were performed to evaluate the performance of ultrasonic fields in demulsifying crude oil emulsions using novel pipe-form equipment. A horn-type piezoelectric ultrasonic transducer with a frequency of 20 kHz and power ranging from 80 W to 1000 W was used for experimental purposes. The influences of the intensity of ultrasonic fields,... 

    Optimizing temperature and introducing new process arrangements for elevating clay's longevity based on the known poisons in the separation process of trace olefins from aromatics

    , Article Journal of Chemical Technology and Biotechnology ; Volume 97, Issue 4 , 2022 , Pages 973-983 ; 02682575 (ISSN) Rouhani, H ; Farhadi, F ; Akbari Kenari, M ; Ramakrishna, S ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    BACKGROUND: The clay treatment widely utilized to reduce unsaturated components in aromatic stream has a detrimental effect on catalyst lifetime. Due to the short lifetime of commercial clay, a huge number of studies have been carried out to address this problem over the last decade. This study aims to optimize the temperature for longer serviceability of clay by removal of unsaturated aliphatic components from aromatic streams through the adsorption and catalytic properties of clay. A novel process arrangement is introduced by scheduling the reuse of deactivated clay that is discarded after deactivation. RESULTS: Results showed that the suitable range of temperature for olefin removal is... 

    Effective factors in the treatment of kerosene-water emulsion by using UF membranes

    , Article Journal of Hazardous Materials ; Volume 161, Issue 2-3 , 2009 , Pages 1216-1224 ; 03043894 (ISSN) Rezvanpour, A ; Roostaazad, R ; Hesampour, M ; Nyström, M ; Ghotbi, C ; Sharif University of Technology
    2009
    Abstract
    The effects of different parameters including membrane type (regenerated cellulose and polysulphone), transmembrane pressure (TMP), the content of oil in the feed, the flow velocity of the feed and pH on the ultrafiltration of an emulsion of kerosene in water were studied. It was found that the important factors affecting ultrafiltration were, in order, membrane type, pressure and oil concentration. The greatest flux at the optimum conditions here of 3 bar, an oil content of 3% (v/v) and with membrane type C30F was predicted as 108 L/(m2 h) that was within the range of the confidence limit of the measured value of 106 L/(m2 h). The normalised FTIR results of the virgin cellulosic membranes... 

    An improved Kalman filtering approach for the estimation of unsaturated flow parameters by assimilating photographic imaging data

    , Article Journal of Hydrology ; Volume 590 , 2020 Rajabi, M. M ; Belfort, B ; Lehmann, F ; Weill, S ; Ataie Ashtiani, B ; Fahs, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    As a non-invasive method, photographic imaging techniques offer some interesting potentials for characterization of soil moisture content in unsaturated porous media, enabling mapping at very fine resolutions in both space and time. Although less explored, the wealth of soil moisture data provided by photographic imaging is also appealing for the estimation of unsaturated soil hydraulic parameters through inverse modeling. However, imaging data have some unique characteristics, including high susceptibility to noise, which can negatively affect the parameter estimation process. In this study a sequential data assimilation approach is developed to simultaneously update soil moisture content... 

    Effects of solar energy on the mechanical properties of tailings in tailings dams

    , Article GeoCongress 2008: Characterization, Monitoring, and Modeling of GeoSystems, New Orleans, LA, 9 March 2008 through 12 March 2008 ; Issue 179 , 2008 , Pages 605-612 ; 08950563 (ISSN); 9780784409725 (ISBN) Osouli, A. R ; Pak, A ; Sharif University of Technology
    2008
    Abstract
    Mine tailings are the most common materials that are used in construction of tailings dams. Due to high level of environmental hazard and serious consequences that are associated with tailings dam failure, proper design of tailings dams is an important factor in mining industry. Water level fluctuation, change in permeability of dam foundation, seismic loads, and excessive settlements are the most common reasons of failure, particularly in upstream type tailings dams. Due to low shear strength of wet tailings, drying of tailing material is very common in practice during the dam construction. In hot climate, the received solar energy at the soil surface converts to soil heat flux, air heat... 

    Disc size markedly influences concentration profiles of intravenously administered solutes in the intervertebral disc: A computational study on glucosamine as a model solute

    , Article European Spine Journal ; Vol. 23, issue. 4 , April , 2014 , p. 715-723 Motaghinasab, S ; Shirazi-Adl, A ; Parnianpour, M ; Urban, J. P. G ; Sharif University of Technology
    Abstract
    Purpose: Tests on animals of different species with large differences in intervertebral disc size are commonly used to investigate the therapeutic efficacy of intravenously injected solutes in the disc. We hypothesize that disc size markedly affects outcome. Methods: Here, using a small non-metabolized molecule, glucosamine (GL) as a model solute, we calculate the influence of disc size on transport of GL into rat, rabbit, dog and human discs for 10 h post intravenous-injection. We used transient finite element models and considered an identical GL supply for all animals. Results: Huge effects of disc size on GL concentration profiles were found. Post-injection GL concentration in the rat... 

    Stereolithography 3D bioprinting method for fabrication of human corneal stroma equivalent

    , Article Annals of Biomedical Engineering ; Volume 48, Issue 7 , June , 2020 , Pages 1955-1970 Mahdavi, S. S ; Abdekhodaie, M. J ; Kumar, H ; Mashayekhan, S ; Baradaran Rafii, A ; Kim, K ; Sharif University of Technology
    Springer  2020
    Abstract
    Abstract: 3D bioprinting technology is a promising approach for corneal stromal tissue regeneration. In this study, gelatin methacrylate (GelMA) mixed with corneal stromal cells was used as a bioink. The visible light-based stereolithography (SLA) 3D bioprinting method was utilized to print the anatomically similar dome-shaped structure of the human corneal stroma. Two different concentrations of GelMA macromer (7.5 and 12.5%) were tested for corneal stroma bioprinting. Due to high macromer concentrations, 12.5% GelMA was stiffer than 7.5% GelMA, which made it easier to handle. In terms of water content and optical transmittance of the bioprinted scaffolds, we observed that scaffold with... 

    Experimental and theoretical study of crude oil pretreatment using low-frequency ultrasonic waves

    , Article Ultrasonics Sonochemistry ; Volume 48 , 2018 , Pages 383-395 ; 13504177 (ISSN) Khajehesamedini, A ; Sadatshojaie, A ; Parvasi, P ; Rahimpour, M. R ; Naserimojarad, M. M ; Sharif University of Technology
    Abstract
    In this work, an ultrasound experimental setup was designed to investigate the feasibility of using low-frequency ultrasonic waves as a substitute to reduce the consumption of chemical demulsifiers in the pretreatment of crude oil. The experiments were planned to study the effects of irradiation time, ultrasonic field intensity and initial water content on the efficiency of separation. The results of experiments showed that by selecting a proper irradiation time and field intensity, it is possible to decrease the usage of demulsifiers by 50%. Moreover, a population balance model was proposed to explicate the experimental data. A hybrid coalescence model was developed to determine the... 

    Green products from herbal medicine wastes by subcritical water treatment

    , Article Journal of Hazardous Materials ; Volume 424 , 2022 ; 03043894 (ISSN) Jouyandeh, M ; Tavakoli, O ; Sarkhanpour, R ; Sajadi, S. M ; Zarrintaj, P ; Rabiee, N ; Akhavan, O ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Herbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube reactor in the pressure range of 0.792–30.0 MPa, varying the temperature (127–327 °C) and time (1–60 min) of extraction. This resulted in new and green material sources, including organic acids, amino acids, and sugars. Amazingly, at very low extraction times (below 5... 

    Enzymatically crosslinked hyaluronic acid microgels as a vehicle for sustained delivery of cationic proteins

    , Article European Polymer Journal ; Volume 115 , 2019 , Pages 234-243 ; 00143057 (ISSN) Jooybar, E ; Abdekhodaie, M. J ; Mousavi, A ; Zoetebier, B ; Dijkstra, P. J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, a novel biodegradable hyaluronic acid (HA) based microgel were prepared via enzymatic crosslinking of tyramine conjugated HA (HA-TA) in an inverse microemulsion. HA-TA microdroplets were crosslinked within a few seconds in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H 2 O 2 ). The high water content of the polymeric network and the inherent negative charge of the HA-TA microgels provided a suitable platform for encapsulation of cationic proteins like lysozyme and TGF-β1 growth factor. The results demonstrated that lysozyme was released, after an initial burst release, in a suitable sustained manner over a period of four weeks. Both diffusion and... 

    Synthesis of new modified MCM-41/PSF nanocomposite membrane for improvement of water permeation flux

    , Article Desalination and Water Treatment ; Volume 41, Issue 1-3 , 2012 , Pages 53-61 ; 19443994 (ISSN) Jomekian, A ; Shafiee, A ; Moradian, A ; Sharif University of Technology
    2012
    Abstract
    The preparation of MCM-41 nanoparticles was made using tetraethylorthosilicate as silica source and cetyltrimethylammonium bromide as surfactant. The X-ray diffraction, transmission electron microscopy, laser particle size analysis and N2 adsorption techniques were used for characterization of nanoparticles. The dimethyldichlorosilan (DMDCS) was applied to improve the dispersion of MCM-41 nanoparticles into the polysulfone (PSF) matrix. The investigation on the thermal stability with thermogravimetric analysis showed the enhanced stability of membranes possessing higher loading of MCM-41 nanaoparticles. The scanning electron microscopy was used to evaluate the quality of particles dispersion... 

    Evaluation of SMAP/Sentinel 1 high-resolution soil moisture data to detect irrigation over agricultural domain

    , Article IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing ; Volume 14 , 2021 , Pages 10733-10747 ; 19391404 (ISSN) Jalilvand, E ; Abolafia Rosenzweig, R ; Tajrishy, M ; Das, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Irrigation is not well represented in land surface, hydrological, and climate models. One way to account for irrigation is by assimilating satellite soil moisture data that contains irrigation signal with land surface models. In this study, the irrigation detection ability of SMAP enhanced 9 km and SMAP-Sentinel 1 (SMAP-S1), 3 km and 1 km soil moisture products are evaluated using the first moment (mean) and the second moment (variability) of soil moisture data. The SMAP enhanced 9 km soil moisture product lacks irrigation signals in an irrigated plain south of Urmia Lake, whereas SMAP-S1 products record irrigation signal in soil moisture variability. Despite observing higher variability... 

    A study of the water-gas shift reaction in Ru-promoted Ir-catalysed methanol carbonylation utilising experimental design methodology

    , Article Chemical Engineering Science ; Volume 66, Issue 20 , October , 2011 , Pages 4798-4806 ; 00092509 (ISSN) Hosseinpour, V ; Kazemeini, M ; Mohammadrezaee, A ; Sharif University of Technology
    2011
    Abstract
    The water-gas shift reaction occurs competitively to the main reaction of the Ir-catalysed methanol carbonylation process. To study the effect of seven factors including temperature, pressure, iridium, ruthenium, methyl iodide, methyl acetate and water concentrations on the formation of hydrogen and carbon dioxide as a result of the water-gas shift reaction and other side reactions in the carbonylation of methanol to acetic acid, the experimental design method combined with response surface methodology (RSM) was utilised. Central composite design at five levels (with α=1.63) was used to design experiments. A quadratic model that included the main and interaction effects of variables for H 2... 

    Optimisation of Ru-promoted Ir-catalysed methanol carbonylation utilising response surface methodology

    , Article Applied Catalysis A: General ; Volume 394, Issue 1-2 , February , 2011 , Pages 166-175 ; 0926860X (ISSN) Hosseinpour, V ; Kazemeini, M ; Mohammadrezaee, A ; Sharif University of Technology
    2011
    Abstract
    In this study, central composite design (CCD) at five levels (-1.63, -1, 0, +1, +1.63) combined with response surface methodology (RSM) have been applied to optimise methanol carbonylation using a ruthenium-promoted iridium catalyst in a homogenous phase. The effect of seven process variables, including temperature, pressure, iridium, ruthenium, methyl iodide, methyl acetate and water concentrations, as well as their binary interactions, were modelled. The determined R 2 values greater than 0.9 for the rate and methane formation data confirmed that the quadratic equation properly fitted the obtained experimental data. The optimum conditions for maximum rate and minimum methane formation were...