Loading...
Search for: wound-healing
0.005 seconds
Total 41 records

    Fabricating Scaffold by Electrospinning with Natural Polymers for Creating Skin Wound Dressings

    , M.Sc. Thesis Sharif University of Technology Yousefi Zowj, Farnaz (Author) ; Alemzadeh, Iran (Supervisor) ; Vosoughi, Manouchehr (Supervisor)
    Abstract
    Skin, the largest organ in the body, presents sophisticated functions for maintaining the structural integrity of the entire body. Skin can regulate the temperature of the body, protect the body against microorganisms, have a sensory function, and produce vitamin-D through UV exposure when in direct sunlight.Due to the self-healing property of skin tissue, skin can be repaired by itself. Nevertheless, if extensive skin loss happens, owing to diabetic ulcers or deep burns, skin will not be able to repair the wound by itself. Therefore, it will lose its functions, and the fabrication of a skin equivalent will be necessary. These skin equivalents will cover the wound, regenerate the native... 

    Fabrication of a Multi-Layered Scaffold to Be Used in Dermal Wound Healing

    , M.Sc. Thesis Sharif University of Technology Kamali, Ali (Author) ; Shamloo, Amir (Supervisor) ; Asghari, Mohsen (Co-Advisor)
    Abstract
    Wound healing by engineered scaffolds is a new step in bio-technology and medical studies in recent years. The goal of the current study is to propose a novel structure for a tissue-engineered scaffold to be used in wound healing. Influenced from the multi-layered structure of natural human skin, the fabricated scaffold consists of two layers to maximize similarity with natural skin. This product is comprised of an electrospun layer made of polycaprolactone and polyvinyl alcohol and a hydrogel layer made of chitosan and gelatin. In order to form a porous medium in the hydrogel layer, freeze-gelation was used instead of freeze drying. The evaluation of fabricated scaffolds was performed by... 

    3D Bioprinting of Amniotic Membrane-Based Nanocomposite for Tissue Engineering Applications: Evaluation of Rheological, Mechanical and Biological Properties

    , Ph.D. Dissertation Sharif University of Technology Kafili, Golara (Author) ; Simchi, Abdolreza (Supervisor) ; Tamjid, Elnaz (Supervisor) ; Niknejad, Hassan (Co-Supervisor)
    Abstract
    3D bioprinting is an additive manufacturing method that facilitates the deposition of the desired cells and biomaterials at any pre-defined location. This technique also enables control over the internal structure and external dimensions of printed constructs. Among various biomaterials used as bioinks, the bioinks derived from decellularized extracellular matrixes (dECMs) have attracted significant attention due to their bioactivity and being a rich source of biochemical cues. Here in this study, the decellularized amnion membrane (dAM) has been selected as the main component of the bioink formulation because of its biocompatibility, low immunogenicity, antibacterial property, abundance,... 

    Fabrication of Porous Gelatin-based Scaffold and Evaluation of Effect of Gamma Irradiation

    , M.Sc. Thesis Sharif University of Technology Vahidi, Milad (Author) ; Forounchi, Massoud (Supervisor) ; Dadbin, Susan (Supervisor)
    Abstract
    Biocompatible porous polymeric scaffolds provide a suitable 3-D environment for proliferation of stem cells in human body. For instance, growth and proliferation concurrent with differentiation of stem cells in such scaffolds can regenerate the tissues or organs. In this attitude we fabricated a porous Gelatin-based scaffold using both of freeze-drying and freeze-extraction methods.Also, effect fo gamma irradiation on microstructure of scaffolds was investigated. In addition, poly(ethylene glycol) was employed to make the scaffold softer. Moreover, effects of various parameters including freezing temperature, cross-linking agent concentration, gelatin and PEG concentrations and their... 

    Fabrication of Artificial skin with Electrospun of Nanofiber made of PCL and PVA

    , M.Sc. Thesis Sharif University of Technology Mohseni, Mina (Author) ; Shamloo, Amir (Supervisor) ; Naghdabadi, Reza (Co-Advisor) ; Vosooghi, Manoochehr (Co-Advisor) ; Firoozbakhsh, Keikhosro (Co-Advisor)
    Abstract
    The main goal of this project is to fabricate the scaffolds including Polycaprolactone and Polyvinyle alcohol nanofibers in order to use as artificial skin. For this purpose, electrospinning parameters have been optimized for various injection rates and the scaffolds containing different percent of PCL and PVA have been made. By investigating the cell growth on these scaffolds, the one made up PVA/PCL (30% ) has been introduced as the best scaffold. To improve biological properties of chosen scaffold, a layer of collagen was coated. The angiogenesis capacity has been improved by adding Heparin to PVA nanofibers. Based on assay of heparin release, it was shown that Heparin is released within... 

    Modeling and Control of Dermal Wound Healing-Remodeling Phase by Computational Intelligent Techniqes

    , M.Sc. Thesis Sharif University of Technology Azizi, Aydin (Author) ; Seifipour, Navid (Supervisor)
    Abstract
    Wound healing is a complex biological process dependent on multiple variables: tissue oxygenation, wound size, contamination, etc. Many of these factors depend on multiple factors themselves. Mechanisms for some interactions between these factors are still unknown. In this resarch we try to simulate and control wound healing process with focusing on remodeling phase by neural networks as an intelligence technique. For these purposes some materials like mathematical modeling, finite elements method, and effect of external forces on the scar tissue are used here  

    Construction of Scaffold by Electrospinning Method for Use in Skin Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Heidari Forushani, Parisa (Author) ; Alemzadeh, Iran (Supervisor) ; Vosoughi, Manouchehr (Supervisor)
    Abstract
    Making artificial skin and skin alternatives is one of the most important areas in tissue engineering. Although much progress has been made so far, there is still no definitive cure for second- and third-degree burns. To create new tissue in the body, a suitable substrate for cells is needed, which is called scaffolding, and an ideal scaffold in tissue engineering should mimic the dimensions of extracellular matrix, and nanofibers seem to be the best option for this purpose. Among the methods of manufacturing of nanofibers, electrospun is very easy and accurate method. In previous studies, many natural and synthetic polymers such as chitosan, alginate, collagen, polyathylene oxide, etc.... 

    Fabrication and Chracatization of Novel Electrospun Chitosan Fibers Reinforced with Bacterial Cellulose and Nanodiamond for Wound Dressing Applications

    , M.Sc. Thesis Sharif University of Technology Ostadhossein, Fatemeh (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    Chronic wounds are among the serious injuries which have called the attention of scientists to invest in an effort to fabricate temporary skin grafts and wound dressing materials. One of the widely acceptable solutions to this obstacle is to design a bioactive scaffold capable of regenerating tissue as well as delivering active agents to the site specific area. To this end, natural biopolymers are considered as suitable candidates to be employed in regenerative medicine due to their excellent biocompatibility. In addition, nanoparticles possess special properties such as the ability in sequestering the drug release which make them promising candidates in the fabrication of the... 

    Synthesis of nanobentonite–poly(vinyl alcohol)–bacterial cellulose nanocomposite by electrospinning for wound healing applications

    , Article Physica Status Solidi (A) Applications and Materials Science ; Volume 217, Issue 6 , 2020 Zeaiean Firouzabadi, P ; Ghanbari, H ; Mahmoudi, N ; Haramshahi, S. M. A ; Javadpour, J ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Polymer-based composites are used for wound healing applications. This work aims to prepare an inorganic-polymer nanocomposite based on bentonite, poly(vinyl alcohol), and bacterial cellulose by electrospinning for wound healing. The nanocomposite is synthesized using a solution intercalation technique, with 1–2 wt% nanobentonite concentration variation. The effects of commercial and laboratory-synthesized nanobentonite as well as the extract of the green walnut shell (EGWS) are examined and characterized by different techniques. The addition of nanobentonite increases the average size of fibers and tensile strength up to 200 nm and more than 15 MPa, respectively, due to the presence of... 

    Fabrication and characterization of core-shell electrospun fibrous mats containing medicinal herbs for wound healing and skin tissue engineering

    , Article Marine Drugs ; Volume 17, Issue 1 , 2019 ; 16603397 (ISSN) Zahedi, E ; Esmaeili, A ; Eslahi, N ; Shokrgozar, M. A ; Simchi, A ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    Nanofibrous structures mimicking the native extracellular matrix have attracted considerable attention for biomedical applications. The present study aims to design and produce drug-eluting core-shell fibrous scaffolds for wound healing and skin tissue engineering. Aloe vera extracts were encapsulated inside polymer fibers containing chitosan, polycaprolactone, and keratin using the co-axial electrospinning technique. Electron microscopic studies show that continuous and uniform fibers with an average diameter of 209 ± 47 nm were successfully fabricated. The fibers have a core-shell structure with a shell thickness of about 90 nm, as confirmed by transmission electron microscopy. By... 

    Type V collagen in scar tissue regulates the size of scar after heart injury

    , Article Cell ; Volume 182, Issue 3 , 2020 , Pages 545-562.e23 Yokota, T ; McCourt, J ; Ma, F ; Ren, S ; Li, S ; Kim, T. H ; Kurmangaliyev, Y. Z ; Nasiri, R ; Ahadian, S ; Nguyen, T ; Tan, X. H. M ; Zhou, Y ; Wu, R ; Rodriguez, A ; Cohn, W ; Wang, Y ; Whitelegge, J ; Ryazantsev, S ; Khademhosseini, A ; Teitell, M. A ; Chiou, P. Y ; Birk, D. E ; Rowat, A. C ; Crosbie, R. H ; Pellegrini, M ; Seldin, M ; Lusis, A. J ; Deb, A ; Sharif University of Technology
    Cell Press  2020
    Abstract
    Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces... 

    Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres

    , Article International Journal of Pharmaceutics ; Volume 537, Issue 1-2 , 2018 , Pages 278-289 ; 03785173 (ISSN) Shamloo, A ; Sarmadi, M ; Aghababaie, Z ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Herein, a hybrid hydrogel/microsphere system is introduced for accelerated wound healing by sustained release of basic fibroblast growth factor (bFGF). The hydrogel is composed of a mixture of PVA, gelatin and chitosan. The double-emulsion-solvent-evaporation method was utilized to obtain microspheres composed of PCL, as the organic phase, and PVA, as the aqueous phase. Subsequently, various in-vitro and in-vivo assays were performed to characterize the system. BSA was used to optimize the release mechanism, and encapsulation efficiency in microspheres, where a combination of 3% (w/v) PCL and 1% (w/v) PVA was found to be the optimum microsphere sample. Incorporation of microspheres within... 

    Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study

    , Article International Journal of Pharmaceutics ; Volume 592 , 2021 ; 03785173 (ISSN) Shamloo, A ; Aghababaie, Z ; Afjoul, H ; Jami, M ; Bidgoli, M. R ; Vossoughi, M ; Ramazani, A ; Kamyabhesari, K ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this study, physically cross-linked hydrogels were developed by freezing-thawing method while different concentrations of honey were included into the hydrogels for accelerated wound healing. The hydrogel was composed of chitosan, polyvinyl alcohol (PVA), and gelatin with the ratio of 2:1:1 (v/v), respectively. Further, the effect of honey concentrations on antibacterial properties, and cell behavior was investigated. In vivo studies, including wound healing mechanism using rat model and histological analysis of section tissue samples were performed. The results illustrated that the incorporation of honey in hydrogels increased the ultimate strain of hydrogels approximately two times,... 

    Drug delivery systems and materials for wound healing applications

    , Article Advanced Drug Delivery Reviews ; Volume 127 , 2018 , Pages 138-166 ; 0169409X (ISSN) Saghazadeh, S ; Rinoldi, C ; Schot, M ; Saheb Kashaf, S ; Sharifi, F ; Jalilian, E ; Nuutila, K ; Giatsidis, G ; Mostafalu, P ; Derakhshandeh, H ; Yue, K ; Swieszkowski, W ; Memic, A ; Tamayol, A ; Khademhosseini, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug... 

    Immunomodulating hydrogels as stealth platform for drug delivery applications

    , Article Pharmaceutics ; Volume 14, Issue 10 , 2022 ; 19994923 (ISSN) Rezaei, Z ; Yilmaz Aykut, D ; Tourk, F. M ; Bassous, N ; Barroso Zuppa, M ; Shawl, A. I ; Ashraf, S. S ; Avci, H ; Hassan, S ; Sharif University of Technology
    MDPI  2022
    Abstract
    Non-targeted persistent immune activation or suppression by different drug delivery platforms can cause adverse and chronic physiological effects including cancer and arthritis. Therefore, non-toxic materials that do not trigger an immunogenic response during delivery are crucial for safe and effective in vivo treatment. Hydrogels are excellent candidates that can be engineered to control immune responses by modulating biomolecule release/adsorption, improving regeneration of lymphoid tissues, and enhancing function during antigen presentation. This review discusses the aspects of hydrogel-based systems used as drug delivery platforms for various diseases. A detailed investigation on... 

    Advances in skin regeneration: application of electrospun scaffolds

    , Article Advanced Healthcare Materials ; Volume 4, Issue 8 , 2015 , Pages 1114-1133 ; 21922640 (ISSN) Norouzi, M ; Boroujeni, S. M ; Omidvarkordshouli, N ; Soleimani, M ; Sharif University of Technology
    Wiley-VCH Verlag  2015
    Abstract
    The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin... 

    A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation

    , Article International Journal of Pharmaceutics ; Volume 564 , 2019 , Pages 350-358 ; 03785173 (ISSN) Mohseni, M ; Shamloo, A ; Aghababaie, Z ; Afjoul, H ; Abdi, S ; Moravvej, H ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the current study, two series of antimicrobial dressings conjugated with silver sulfadiazine (SSD) and silver nanoparticles (AgNPs) were developed and evaluated for chronic wound healing. Highly porous polycaprolactone (PCL)/polyvinyl alcohol (PVA) nanofibers were loaded with different concentrations of SSD or AgNPs and compared comprehensively in vitro and in vivo. SSD and AgNPs indicated a strong and equal antimicrobial activity against S. aureus. However, SSD had more toxicity against fibroblast cells over one week in vitro culture. An in vivo model of wound healing on male Wistar rats was developed with a full thickness wound. All the wound dressings indicated enough flexibility and... 

    Defining microRNA signatures of hair follicular stem and progenitor cells in healthy and androgenic alopecia patients

    , Article Journal of Dermatological Science ; Volume 101, Issue 1 , 2021 , Pages 49-57 ; 09231811 (ISSN) Mohammadi, P ; Nilforoushzadeh, M. A ; Youssef, K. K ; Sharifi Zarchi, A ; Moradi, S ; Khosravani, P ; Aghdami, R ; Taheri, P ; Hosseini Salekdeh, G ; Baharvand, H ; Aghdami, N ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Background: The exact pathogenic mechanism causes hair miniaturization during androgenic alopecia (AGA) has not been delineated. Recent evidence has shown a role for non-coding regulatory RNAs, such as microRNAs (miRNAs), in skin and hair disease. There is no reported information about the role of miRNAs in hair epithelial cells of AGA. Objectives: To investigate the roles of miRNAs affecting AGA in normal and patient's epithelial hair cells. Methods: Normal follicular stem and progenitor cells, as well as follicular patient's stem cells, were sorted from hair follicles, and a miRNA q-PCR profiling to compare the expression of 748 miRNA (miRs) in sorted cells were performed. Further, we... 

    Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing

    , Article Advanced Drug Delivery Reviews ; Volume 123 , 2018 , Pages 33-64 ; 0169409X (ISSN) Mofazzal Jahromi, M. A ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Sahandi Zangabad, K ; Ghamarypour, A ; Aref, A. R ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally... 

    Cell-imprinted substrates act as an artificial niche for skin regeneration

    , Article ACS Applied Materials and Interfaces ; Vol. 6, Issue. 15 , 2014 , Pages 13280-13292 ; ISSN: 19448244 Mashinchian, O ; Bonakdar, S ; Taghinejad, H ; Satarifard, V ; Heidari, M ; Majidi, M ; Sharifi, S ; Peirovi, A ; Saffar, S ; Taghinejad, M ; Abdolahad, M ; Mohajerzadeh, S ; Shokrgozar, M. A ; Rezayat, S. M ; Ejtehadi M. R ; Dalby, M. J ; Mahmoudi, M ; Sharif University of Technology
    Abstract
    Bioinspired materials can mimic the stem cell environment and modulate stem cell differentiation and proliferation. In this study, biomimetic micro/nanoenvironments were fabricated by cell-imprinted substrates based on mature human keratinocyte morphological templates. The data obtained from atomic force microscopy and field emission scanning electron microscopy revealed that the keratinocyte-cell-imprinted poly(dimethylsiloxane) casting procedure could imitate the surface morphology of the plasma membrane, ranging from the nanoscale to the macroscale, which may provide the required topographical cell fingerprints to induce differentiation. Gene expression levels of the genes analyzed...