Loading...
Search for: esfandiar--a
0.004 seconds
Total 41 records

    Complete steric exclusion of ions and proton transport through confined monolayer water

    , Article Science ; Volume 363, Issue 6423 , 2019 , Pages 145-148 ; 00368075 (ISSN) Gopinadhan, K ; Hu, S ; Esfandiar, A ; Lozada Hidalgo, M ; Wang, F. C ; Yang, Q ; Tyurnina, A. V ; Keerthi, A ; Radha, B ; Geim, A. K ; Sharif University of Technology
    American Association for the Advancement of Science  2019
    Abstract
    It has long been an aspirational goal to create artificial structures that allow fast permeation of water but reject even the smallest hydrated ions, replicating the feat achieved by nature in protein channels (e.g., aquaporins). Despite recent progress in creating nanoscale pores and capillaries, these structures still remain distinctly larger than protein channels. We report capillaries made by effectively extracting one atomic plane from bulk crystals, which leaves a two-dimensional slit of a few angstroms in height. Water moves through these capillaries with little resistance, whereas no permeation could be detected even for such small ions as Na + and Cl − . Only protons (H + ) can... 

    Plasmonic enhancement of photocurrent generation in two-dimensional heterostructure of WSe2/MoS2

    , Article Nanotechnology ; Volume 32, Issue 32 , 2021 ; 09574484 (ISSN) Ghods, S ; Esfandiar, A ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Enhancing the photoresponse of single-layered semiconductor materials is a challenge for high-performance photodetectors due to atomically thickness and limited quantum efficiency of these devices. Band engineering in heterostructure of transition metal chalcogenides (TMDs) can sort out part of this challenge. Here, we address this issue by utilizing the plasmonics phenomenon to enrich the optoelectronics property of the WSe2/MoS2 heterojunction and further enhancement of photoresponse. The introduced approach presents a contamination-free, tunable and efficient way to improve light interactions with heterojunction devices. The results showed a 3600-fold enhancement in photoresponsivity and... 

    Enhanced Broadband Photoresponsivity of the CZTS/WSe2Heterojunction by Gate Voltage

    , Article ACS Applied Electronic Materials ; Volume 4, Issue 12 , 2022 , Pages 6189-6203 ; 26376113 (ISSN) Ghods, S ; Vardast, S ; Esfandiar, A ; Iraji Zad, A ; Heidariramsheh, M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    High-performance photodetectors play critical roles in numerous photon-based applications in imaging, communication, and energy harvesting. Nowadays, heterostructures have received significant attention to extend the performance of photodetectors, with exceptionally high optical absorption and a wide absorption range. However, the enhancement factors, exact mechanism, and facile fabrication procedures are long-standing problems. Here, a heterojunction of a two-dimensional chemical vapor deposition-grown monolayer of WSe2with a Cu2ZnSnS4(CZTS) film is introduced. The CZTS film as an abundant material was synthesized in the form of nanoparticles, and it showed a great effect on the enhancement... 

    Enhanced photoresponse and wavelength selectivity by silar-coated quantum dots on two-dimensional WSe2Crystals

    , Article ACS Omega ; Volume 7, Issue 2 , 2022 , Pages 2091-2098 ; 24701343 (ISSN) Ghods, S ; Esfandiar, A ; Iraji Zad, A ; Vardast, S ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    High-performance photodetectors play crucial roles as an essential tool in many fields of science and technology, such as photonics, imaging, spectroscopy, and data communications. Demands for desired efficiency and low-cost new photodetectors through facile manufacturing methods have become a long-standing challenge. We used a simple successive ionic layer adsorption and reaction (SILAR) method to synthesize CdS, CdSe, and PbS nanoparticles directly grown on WSe2 crystalline flakes. In addition to the excellent wavelength selectivity for (30 nm) CdS, (30 nm) CdSe, and (6 nm) PbS/WSe2 heterostructures, the hybrid devices presented an efficient photodetector with a photoresponsivity of 48.72... 

    Synthesis and characterization of TiO2-graphene nanocomposites modified with noble metals as a photocatalyst for degradation of pollutants

    , Article Applied Catalysis A: General ; Volume 462-463 , 2013 , Pages 82-90 ; 0926860X (ISSN) Ghasemi, S ; Esfandiar, A ; Rahman Setayesh, S ; Habibi Yangjeh, A ; Iraji Zad, A ; Gholami, M. R ; Sharif University of Technology
    2013
    Abstract
    TiO2-graphene (TiO2-GR) nanocomposites were synthesized using photocatalytic reduction method. TiO2-GR nanocomposites were thereafter doped with noble metals (Pt and Pd) by chemical reduction of the corresponding cations. The samples were characterized by different techniques. The addition of GR to TiO2 decreases the crystalline size of TiO2 due to the homogeneous dispersion of the TiO2 nanoparticles on GR sheets and prevention of coagulation of TiO2 nanoparticles during synthesis process. In addition, the surface area of TiO2 was increased by addition of GR and deposition of noble metals which helps to prevent agglomeration of graphene sheets and TiO 2 nanoparticles. Red shifts to the... 

    Ion transport through graphene oxide fibers as promising candidate for bblue energy harvesting

    , Article Carbon ; Volume 165 , 2020 , Pages 267-274 Ghanbari, H ; Esfandiar, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Nanostructured graphene based membranes demonstrated excellent capabilities in various applications in nanofiltration and energy conversion due to unique atomically smooth surfaces and adjustable pore size or interlayers spacing at Angstrom scales. There are some reports on the osmotic power generation using physical confinements and electrostatic interactions between ions and GO membranes. However, the results indicated insufficient power densities (˂1 W/m2) can be achieved because of swelling of interlayer spacing of the GO membranes upon exposure to aqueous solutions which results in reducing the influence of confinement on ionic motilities. Here, the GO fibers is presented as one... 

    Tuning of ionic transport through graphene oxide fibers by sheets size

    , Article Iranian Journal of Physics Research ; Volume 21, Issue 1 , 2021 , Pages 41-49 ; 16826957 (ISSN) Ghanbari, H ; Esfandiar, A ; Khansanami, M ; Sharif University of Technology
    Isfahan University of Technology  2021
    Abstract
    In this study, graphene oxide fibers are introduced as new graphene oxide (GO) membranes with the capability of ion selectivity. Graphene oxide fibers, like other macro structured membranes, are always associated with cavities and defects. To solve this problem, a 50% combination of graphene oxide suspension including small sheets with an average size of ~ 0.5 µm2 and large sheets with an area of more than 10 µm2 was used. According to the morphological results of scanning electron microscopy, as well as the amount of ionic transport through the fiber, reduction of cavities and its defects were confirmed. Moreover, it was found that ionic current through fibers consist of large and small GO... 

    Anomalously low dielectric constant of confined water

    , Article Science ; Volume 360, Issue 6395 , 2018 , Pages 1339-1342 ; 00368075 (ISSN) Fumagalli, L ; Esfandiar, A ; Fabregas, R ; Hu, S ; Ares, P ; Janardanan, A ; Yang, Q ; Radha, B ; Taniguchi, T ; Watanabe, K ; Gomila, G ; Novoselov, K. S ; Geim, A. K ; Sharif University of Technology
    American Association for the Advancement of Science  2018
    Abstract
    The dielectric constant e of interfacial water has been predicted to be smaller than that of bulk water (e ≈ 80) because the rotational freedom of water dipoles is expected to decrease near surfaces, yet experimental evidence is lacking. We report local capacitance measurements for water confined between two atomically flat walls separated by various distances down to 1 nanometer. Our experiments reveal the presence of an interfacial layer with vanishingly small polarization such that its out-of-plane e is only ~2. The electrically dead layer is found to be two to three molecules thick. These results provide much-needed feedback for theories describing water-mediated surface interactions and... 

    Universal rotation of nanowires in static uniform electric fields in viscous dielectric liquids

    , Article Applied Physics Letters ; Volume 113, Issue 6 , 2018 ; 00036951 (ISSN) Farain, K ; Esfandiar, A ; Moshfegh, A. Z ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    The wide utilization of nanomanipulation as a promising approach in microorganisms, nanoelectromechanical systems, and assembly of nanostructures remarks the importance of nanostructures' motion in electric fields. Here, we study the rotational dynamics of metallic and non-metallic nanowires (NWs) in a static uniform electric field in viscous dielectric liquids. For metallic NWs, it has been theoretically shown that the electric field-induced rotation is practically independent of the geometrical dimensions and the electrical properties of NWs. Our experimental results for suspended silver (Ag) NWs in microscope oil are perfectly in agreement with this model. However, in the case of TiO2... 

    Shooting at the nanoscale: Collection and acceleration of nanowires with an external electric field

    , Article Applied Physics Letters ; Volume 114, Issue 1 , 2019 ; 00036951 (ISSN) Farain, K ; Esfandiar, A ; Moshfegh, A. Z ; Sharif University of Technology
    American Institute of Physics Inc  2019
    Abstract
    We report an approach for collecting, charging, and exceedingly fast motion of silver nanowires (Ag NWs) using an external static electric field. With a proper choice of suspension medium, dispersed Ag NWs can be efficiently driven to align and accumulate vertically on the edges of two parallel gold microelectrodes on a glass substrate surface by dielectrophoresis. Then, at sufficiently high electric fields (> 2.0 × 10 5 V/m), these NWs break at the electrode contact point while carrying some net charge. Afterwards, they immediately accelerate in the field direction and, despite an extremely low Reynolds number for the motion of NWs in viscous liquids, move with high speeds (> 25 mm/s)... 

    Effect of film morphology on water oxidation enhancement in NiFeCo modified hematite photoanodes

    , Article Surface and Coatings Technology ; Volume 421 , 2021 ; 02578972 (ISSN) Eftekharinia, B ; Sobhkhiz Vayghan, N ; Esfandiar, A ; Dabirian, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Hematite (α-Fe2O3) is a promising candidate for water oxidation applications due to its abundance in the earth crust and its suitable bandgap. However, hematite performance is severely limited by electron-hole recombination at its interface with the electrolyte; something that can be addressed using electrocatalysts. In this report, we evaluate the influence of a ternary NiFeCo co-catalyst to enhance the water oxidation performance of hematite photoanodes. Thus, NiFeCo co-catalyst is optimized for hematite thin films with i) dense and ii) porous (nano-rod) morphologies. Both hematite films are prepared using electron beam evaporation method followed by an annealing step and NiFeCo... 

    Cauliflower-Like Ni/MXene-bridged fiber-shaped electrode for flexible microsupercapacitor

    , Article Energy and Fuels ; Volume 36, Issue 4 , 2022 , Pages 2140-2148 ; 08870624 (ISSN) Darmiani, N ; Iraji zad, A ; Esfandiar, A ; Asen, P ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Microscale, flexible, and lightweight electrodes are of interest for the generation of light and miniaturized energy storage systems such as microsupercapacitors. Wire or fiber-shaped electrodes can be considered as potential candidates for microsupercapacitor fabrication. Herein, a facile strategy for the preparation of high electrochemical performance fiber-shaped microsupercapacitors based on Ni(OH)2-Ni-Ti3C2 film on a copper wire (CW) electrode is presented. We employed a porous cauliflower-like Ni-Ti3C2 MXene film as the supporting scaffold to bridge a Ni(OH)2 active substance with a Cu wire current collector. This hierarchical structure supplies a high surface area, many electroactive... 

    Facile synthesis of highly efficient bifunctional electrocatalyst by vanadium oxysulfide spheres on cobalt-cobalt sulfonitride nanosheets for oxygen and hydrogen evolution reaction

    , Article Electrochimica Acta ; Volume 391 , 2021 ; 00134686 (ISSN) Asen, P ; Esfandiar, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Synthesis of efficient, low-cost, and stable bifunctional electrocatalysts with earth-abundant resources for electrochemical water electrolysis is a challenging subject for large-scale energy conversion processes. Herein, we report a high-performance electrocatalyst based on vanadium oxysulfide/cobalt-cobalt sulfonitride (VOS/Co-CoSN) for oxygen and hydrogen evolution reaction (OER and HER). The Co-CoSN film was synthesized on a copper sheet (CS) by a facile electrodeposition method. Then, VOS was electrochemically grown onto the Co-CoSN@CS electrode at various deposition times. At the optimal deposition time (300 s), the obtained VOS-300/Co-CoSN catalyst was studied for OER and HER in... 

    Facile synthesis of cotton flower like Ni–Co/Ni–Co–O–P as bifunctional active material for alkaline overall water splitting and acetaminophen sensing

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 76 , 2022 , Pages 32516-32530 ; 03603199 (ISSN) Asen, P ; Esfandiar, A ; Iraji zad, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The development of electrode materials with simple preparation, favorable price, excellent electrocatalytic activity, and stability are some of the most important issues in the field of electrochemistry. Herein, we prepared Ni–Co/Ni–Co–O–P cotton flower like on a copper sheet (CS) by a convenient, efficient, and scalable electrodeposition method. The Ni–Co/Ni–Co–O–P was employed as effective binder free electrode material in two different applications such as electrocatalytic water splitting and acetaminophen (APAP) sensor. Remarkably, the Ni–Co/Ni–Co–O–P@CS exhibits low overpotentials of 310 and 90 mV at 10 mA cm−2 for oxygen and hydrogen evolution reactions in alkaline media, respectively.... 

    Nonenzymatic sweat-based glucose sensing by flower-like au nanostructures/graphene oxide

    , Article ACS Applied Nano Materials ; Volume 5, Issue 9 , 2022 , Pages 13361-13372 ; 25740970 (ISSN) Asen, P ; Esfandiar, A ; Kazemi, M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The development of a nonenzymatic glucose sensor working in real human body conditions through a noninvasive sampling approach has attracted considerable attention. Hence, this work focuses on the development of a new nonenzymatic glucose sensor based on flower-like Au nanostructures (F-AuNTs) and graphene oxide (GO) as a supporting matrix. The F-AuNTs-GO hybrid was synthesized by simple drop casting of the GO suspension onto the graphite sheet (GS) followed by electrodeposition of F-AuNTs on GO nanosheets at 3 V in a two-electrode system. The electrocatalytic activity of the F-AuNTs-GO/GS sensor toward glucose electrooxidation was initially evaluated in a 0.1 M buffer phosphate solution (pH... 

    Urchin-like hierarchical ruthenium cobalt oxide nanosheets on Ti3C2T: XMXene as a binder-free bifunctional electrode for overall water splitting and supercapacitors

    , Article Nanoscale ; Volume 14, Issue 4 , 2022 , Pages 1347-1362 ; 20403364 (ISSN) Asen, P ; Esfandiar, A ; Mehdipour, H ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Synthesizing efficient electrode materials for water splitting and supercapacitors is essential for developing clean electrochemical energy conversion/storage devices. In the present work, we report the construction of a ruthenium cobalt oxide (RuCo2O4)/Ti3C2Tx MXene hybrid by electrophoretic deposition of Ti3C2Tx MXene on nickel foam (NF) followed by RuCo2O4 nanostructure growth through an electrodeposition process. Owing to the strong interactions between RuCo2O4 and Ti3C2Tx sheets, which are verified by density functional theory (DFT)-based simulations, RuCo2O4/Ti3C2Tx MXene@NF can serve as a bifunctional electrode for both water splitting and supercapacitor applications. This electrode... 

    Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide

    , Article Carbon ; Volume 50, Issue 8 , 2012 , Pages 3015-3025 ; 00086223 (ISSN) Akhavan, O ; Kalaee, M ; Alavi, Z. S ; Ghiasi, S. M. A ; Esfandiar, A ; Sharif University of Technology
    2012
    Abstract
    An easy method for green and low-temperature (40 °C) reduction of graphene oxide (GO) by increasing the antioxidant activity of green tea polyphenols (GTPs) in the presence of iron was developed. The reduction level (obtained by X-ray photoelectron spectroscopy) and electrical conductivity (obtained by current-voltage measurement) of the GO sheets reduced by GTPs in the presence of iron were comparable to those of hydrazine-reduced GO and much better than those of the GO reduced by only GTPs (in the absence of iron) at reduction temperatures of 40-80 °C. Raman spectroscopy indicated that application of GTPs in the presence of iron, in contrast to hydrazine, resulted in better recovering of... 

    Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation

    , Article Journal of Physical Chemistry B ; Volume 115, Issue 19 , 2011 , Pages 6279-6288 ; 15206106 (ISSN) Akhavan, O ; Ghaderi, E ; Esfandiar, A ; Sharif University of Technology
    American Chemical Society  2011
    Abstract
    Bioactivity of Escherichia coli bacteria (as a simple model for microorganisms) and interaction of them with the environment were controlled by their capturing within aggregated graphene nanosheets. The oxygen-containing functional groups of chemically exfoliated single-layer graphene oxide nanosheets were reduced by melatonin as a biocompatible antioxidant. While each one of the graphene (oxide) suspension and melatonin solution did not separately show any considerable inactivation effects on the bacteria, aggregation of the sheets in the melatonin-bacterial suspension resulted in trapping the bacteria within the aggregated sheets, i.e., a kind of inactivation. The bacteria trapped within... 

    Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction

    , Article Journal of Physical Chemistry C ; Volume 114, Issue 30 , July , 2010 , Pages 12955-12959 ; 19327447 (ISSN) Akhavan, O ; Abdolahad, M ; Esfandiar, A ; Mohatashamifar, M ; Sharif University of Technology
    2010
    Abstract
    TiO2 nanoparticles were physically attached to chemically synthesized single-layer graphene oxide nanosheets deposited between Au electrodes in order to investigate the electrical, chemical, and structural properties of the TiO2/graphene oxide composition exposed to UV irradiation. X-ray photoelectron spectroscopy showed that after effective photocatalytic reduction of the graphene oxide sheets by the TiO2 nanoparticles in ethanol, the carbon content of the reduced graphene oxides gradually decreased by increasing the irradiation time, while no considerable variation was detected in the reduction level of the reduced sheets. Raman spectroscopy indicated that, at first, the photocatalytic... 

    Structural and dynamical fingerprints of the anomalous dielectric properties of water under confinement

    , Article Physical Review Materials ; Volume 5, Issue 2 , 2021 ; 24759953 (ISSN) Ahmadabadi, I ; Esfandiar, A ; Hassanali, A ; Ejtehadi, M. R ; Sharif University of Technology
    American Physical Society  2021
    Abstract
    There is a long-standing question about the molecular configuration of interfacial water molecules in the proximity of solid surfaces, particularly carbon atoms, which plays a crucial role in electrochemistry and biology. In this study, the dielectric, structural, and dynamical properties of confined water placed between two parallel graphene walls at different interdistances from the angstrom scale to a few tens of nanometer have been investigated using molecular dynamics. For the dielectric properties of water, we show that the dielectric constant of the perpendicular component of water drastically decreases under sub-2-nm spatial confinement. The dielectric constant data obtained through...