Loading...
Search for: kokabi--amir-hossein
0.006 seconds

    Semisolid Stir Joining of As-Cast Silicon-Aluminum Bronze

    , M.Sc. Thesis Sharif University of Technology Ferasat, Keyvan (Author) ; Kokabi, Amir Hossein (Supervisor) ; Ashuri, Hossein (Supervisor)
    Abstract
    Aluminum Bronzes have many applications in marine environments. These alloys suffer from both hot cracking and cold cracking. In order to overcome the hot cracking and cold cracking, Semisolid Stir Joining method and a proper thermal cycle was used respectively. Effects of temperature, stirring rate, and tool type were investigated in Semisolid Stir joining method. In this method, butt joint design was used in order to place specimens, and the specimens were heated up to specific temperatures (920, 925, 930°C). A stirrer (Cylindrical and Grooved tool) with three rotational speeds (800, 1200, 1600 RPM) was introduced into the stir weld seam. Welded specimens were cooled to the 900°C... 

    Correlation between Microstructure with Wear and Toughness Properties of Martensitic Stainless Steel

    , M.Sc. Thesis Sharif University of Technology Khaghani, Alireza (Author) ; Pouranvari, Majid (Supervisor) ; Kokabi, Amir Hossein (Supervisor)
    Abstract
    Fe-Cr-C hardfacing alloy is the most popular alloy used in severe abrasive condition such as mining and cement industries. One of the limitation of these hardfacing alloys is their low toghness, which reduce the application of these alloys under impact wear conditions. The purpose of this thesis is to investigate the effect of microstructure on the wear and toughness properties of AISI420 hardfaced martensitic stainless steel alloy. For this purpose, after deposition of the hardfaced alloy on a steel substrate, various heat treatments such as quench, quench temper, quench and partitioning and austenite reversion are designed to change the microstructure of the hardfaced alloy from fully... 

    Effect of Titanium on the Microstructure and Sour Environment Cracking Resistance of API 5L-X70 SAW Weld Metals

    , Ph.D. Dissertation Sharif University of Technology Beidokhti, Behrooz (Author) ; Kokabi, Amir Hossein (Supervisor) ; Dolati, Abolghasem (Supervisor)
    Abstract
    In this research, the effect of addition of titanium to the weld metal of API 5L-X70 steel at two levels of manganese (1.4 and 2.0%) was studied; and the microstructure, mechanical properties, and hydrogen cracking resistance of the weld metals were investigated carefully. The submerged arc welding method was used for preparation of the welds and the metallographic test, hardness test, longitudinal tension test, Charpy V-notch impact test, HIC and SSC evaluation tests and thermal desorption spectroscopy test were done for each weld. The results showed that the addition of titanium to the weld metal increased formation of acicular ferrite; therefore, toughness of the welds was increased... 

    Fabrication and Microstructual Study of Ti/TiC Composite Coating on CP-Ti by Using Various Cored Wires and TIG

    , M.Sc. Thesis Sharif University of Technology Monfared, Amir (Author) ; Kokabi, Amir Hossein (Supervisor) ; Asgari, Sirous (Supervisor)
    Abstract
    Tungsten Inert Gas (TIG) process and different cored wires that were filled separately with nano TiC particles, micro TiC particles and graphite powders were employed to produce surface composite coating on CP-Ti substrate to improve wear resistance. At first using titanium strips, wire drawing process and different powders various cored wires were produced and then using TIG, these cored wires were coated on CP-Ti. This process was done for different current intensities and velocities. Composite coating tracks were found to be affected by the TIG heat input and the kinds of the cored wires. The microstructures of the surface composite coating showed phases of α'-Ti and primary and dendritic... 

    Grain Size Control in Fusion Welding and Wire-Arc Additive Manufacturing of Ferritic Stainless Steels

    , M.Sc. Thesis Sharif University of Technology Alikhani, Ali Akbar (Author) ; Pouranvari, Majid (Supervisor) ; Kokabi, Amir Hossein (Supervisor)
    Abstract
    Ferritic stainless steels, despite having a good combination of mechanical properties and corrosion properties and low price, are less used than austenitic stainless steels due to their low weldability. The main challenges of welding ferritic stainless steels are coarse grain formation in the molten area as well as grain growth in the heat affected zone. In this research, in the first phase, an attempt is made to change the shape and size of the grains in the melted zone by changing the GTAW fusion welding parameters, including welding current and welding speed. In the second phase, an attempt is made to prevent the formation of columnar grains by adding micron particles to the molten pool... 

    Microstructure/Properties Relationship in Lead Free Solder Joint Reinforced with Graphene Nanosheets

    , M.Sc. Thesis Sharif University of Technology Azghandirad, Sajjad (Author) ; Kokabi, Amir Hossein (Supervisor) ; Movahedi, Mojtaba (Supervisor)
    Abstract
    Development of electronic industries, compression of electronic equipment, and removing lead from electronic circuits for environmental reasons, a significant challenge was created in the design and development of tin-based lead-free solders with physical and mechanical properties close to old tin-lead alloys. In this regard, the set of Sn-Ag-Cu alloys with eutectic composition and related compounds have been proposed as alloys to replace Sn-Pb solders. As a lead-free solder alloy, low melting point (≈217℃), high reliability of joints, and compatibility with various fluxes are among the properties of this category of alloys. In order to improve the mechanical properties of the joint... 

    Microstructural Evolution During Post-Bond Heat Treatment of Brazed Nickel Base Super Alloys

    , M.Sc. Thesis Sharif University of Technology Soltani Abri, Hamid (Author) ; Pouranvari, Majid (Supervisor) ; Kokabi, Amir Hossein (Co-Supervisor)
    Abstract
    The brazing process is the preferred method for bonding and repairing high temperature resistant superalloys. In this process, filler metals containing MPD elements such as B and Si are used. The presence of these elements causes the formation of brittle and eutectic phases such as borides and silicides in the joint area. These phases reduce the mechanical properties and re-melting temperature of the joint. By increasing the temperature and time of bonding and using the concept of isothermal solidification, the formation of boride and silicide phases can be prevented. In wide gap joints, the time to complete the isothermal solidification is very long, and applying such temperature and time... 

    Evaluation of Microstructure and Wear Behaviour of Nicrbsi Composite Coating Deposited by Atmospheric Plasma Spray and Plasma Transferred Arc on Steel Substrate

    , M.Sc. Thesis Sharif University of Technology Rashid, Majid (Author) ; Movahedi, Mojtaba (Supervisor) ; Kokabi, Amir Hossein (Supervisor)
    Abstract
    Nowadays, in many industrial applications, protecting surfaces has become necessary. This research attempted to create a coating resistant to the wear of NiCrBSi with the help of the atmospheric plasma spray and the process of plasma Transferred Arc on the substrate of the simple carbon steel. Also, in order to study the effect of compositing on hardness and abrasive properties of the APS coatings, NiCrBSi powder was strengthened with 25 weight percent of Titanium Carbide particles so that the NiCrBSi-25TiC composite coating could also be created. According to the nature of the APS process, the substructure of this coating always has some porosity and layered structure, and the connection of... 

    An Investigation into Microstructure and Mechanical Properties of Al/Mgo Composite Fabricated by Friction Stir Processing

    , M.Sc. Thesis Sharif University of Technology (Author) ; Movahedi, Mojtaba (Supervisor) ; Kokabi, Amir Hossein (Supervisor)
    Abstract
    In this research, the strength and wear resistance of aluminum 5083 was improved by using composites with magnesium oxide nanoparticles (MgO-20nm) and friction stir processing. The effect of the number of process passes and rotational speed variables, considering the number of one, three, and five passes at rotational speeds of 700, 1000, 1300, 1600, and 1900 rpm, was investigated on the mechanical properties and wear behavior of the composite. To determine the appropriate weight percentage of MgO powder, the longitudinal tensile strength of three composites with different weight percentages of 3, 4.7, and 6 were compared. The linear movement speed of the tool was selected as a constant... 

    Effect of Nickel and Manganese on Weld Microstructure and Mechanical Properties in Shielded Metal arc Welded HSLA-X80

    , M.Sc. Thesis Sharif University of Technology Sheykh Jaberi, Fariba (Author) ; Kokabi, Amir Hossein (Supervisor) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Microstructure and mechanical properties developments of X80 weld metal by addition of different amounts of alloying elements such as: Nickel and Manganese in coated electrodes were investigated. For this reason samples were welded by electrodes that Ni value has been changed between 0.8%- 3.2% in tow critical amounts of Mn: 0.7 and 1.6. The weld quality was evaluated using nondestructive testing methods (NDT), such as visual inspection and radiography. Tensile test, Charpy impact test and microhardness results indicated the suitable range of Ni and Mn for achieving acceptable mechanical properties. In addition, optical microscopy and scanning electron microscopy (SEM) were applied to link... 

    Dissimilar Friction Stir Welding between Aluminum Alloy and Magnesium Alloy

    , M.Sc. Thesis Sharif University of Technology Sadeghi Alavijeh, Ali Reza (Author) ; Kokabi, Amir Hossein (Supervisor) ; Seyed Reihani, Morteza (Supervisor)
    Abstract
    In this project, Dissimilar Friction Stir Welding (FSW) between aluminum alloys (1100-H12 and 5083-O) and Magnesium alloy (AZ31B-O) with 3mm thickness were butt joined. Fusion welding of aluminum/magnesium alloys has failed because of forming much more intermetallic compounds. By using friction stir welded samples, effect of welding parameters such as tool travel speed, tool rotation rate, tool position respect to weld centerline, and sheet position respect to tool direction on mechanical (tensile strength, yield strength and elongation) and microstructural properties of the welds were investigated. After several tests, range of optimum parameters were obtained. In both 1100 and 5083 alloys,... 

    Microstructure Evolution Mechanism and Mechanical Properties of TLP bonded IN718 Nickel Based Superalloy

    , Ph.D. Dissertation Sharif University of Technology Pouranvari, Majid (Author) ; Ekrami, Ali Akbar (Supervisor) ; Kokabi, Amir Hossein (Supervisor)
    Abstract
    The thesis is focused on the process-microstructure-properties relationships in transient liquid phase (TLP) bonded IN718 nickel based superalloy. The bonding was carried out using Ni-B-(Si)-(Cr) interlayers at temperatures of 1273-1448 K with various bonding time to ensure completion of isothermal solidification. Microstructure development mechanism, kinetics of isothermal solidification during bonding process, influence of microstructure gradient induced by bonding process on the aging behavior of the joint and the response of joint region to post-bonded heat treatment were considered. It was shown that the isothermal solidification rate depends on the (1) diffusion flux of B into the... 

    Design, Fabrication and Characterization of Lead-Free Nano-Composite Solder Sn-Ag-Cu/ CeO2

    , Ph.D. Dissertation Sharif University of Technology Roshanghias, Ali (Author) ; Kokabi, Amir Hossein (Supervisor) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    As one of the key technologies for high performance electronic devices, composite solders have been recently developed to improve thermal and mechanical properties of solder joints. In this study, accumulative roll bonding (ARB) process was used as an effective alternative method for manufacturing high-strength, finely dispersed, void-free and highly uniform Sn-Ag-Cu/CeO2 nanocomposite solders. Microstructural investigation of nanocomposite solders revealed that homogenous distribution of CeO2 nanoparticle has been achieved and the eutectic as-cast morphology of the solder changed to recrystallized fine grained structure. As a result of severe plastic deformation during rolling, brittle and... 

    Investigation of Effect of Tool Geometry on Microstructure and Mechanical Properties of Stir Lap Welded Aluminum Alloy 5456

    , M.Sc. Thesis Sharif University of Technology Naderi, Mohammad Reza (Author) ; Kokabi, Amir Hossein (Supervisor) ; Ekrami, Ali Akbar (Supervisor)

    An Investigation on the Microstructure and Hardness of Martensitic Stainless Steel in Repair Welding Method

    , M.Sc. Thesis Sharif University of Technology Tehrani, Morteza (Author) ; Kokabi, Amir Hossein (Supervisor) ; Madah Hoseini, Hamid Reza (Co-Advisor)
    Abstract
    Repair welding is one of the important maintenance processes that include build-up welding and surfacing.In this study, investigation of repair welding parameters has been conducted to achieve desired microstructure with the appropriate toughness and minimum residual stress.In this research, local post-weld heat treatment has been performed by Tungsten electrode arc on weld zone. Performing this process with optimum parameters leads to the best heat cycle with the tempered Martensite microstructure. Residual stress of the sample will be reduced. HAZ coarse grains will be refined to finer grains which result in to improved toughness and reduced hardness to the acceptable limit.
    Results... 

    The Effect of Martensite Morphology on Mechanical Properties of TLP Bonded Dual Phase Steels

    , M.Sc. Thesis Sharif University of Technology Fazaeli, Abolfazl (Author) ; Ekrami, Ali Akbar (Supervisor) ; Kokabi, Amir Hossein (Supervisor)
    Abstract
    In the present study the production of ferrite-martensite dual-phase (DP) Steel was investigated during the bonding process by transient liquid phase method. The effect of martensite morphologies on mechanical properties of bonding zone were also studied. To make the bonding process and DP steel production heat treatment cycle simultaneously, the step in which the isothermal solidification completed, bonding process, was done simultaneously with austenitising of the steel. Homogenizing of the bond zone, was also done with DP steel making at the intercritical temperature. The St52 steel was utilized for producing DP steel and for bonding process, iron base interlayer with melting point of... 

    Production of Al-TiO2 composite layer by friction stirs processing

    , M.Sc. Thesis Sharif University of Technology Nami, Hamid (Author) ; Kokabi, Amir Hossein (Supervisor) ; Maddah Hosseini (Co-Advisor)
    Abstract
    In this study, Al-TiO2 composites layer were produced on Al 1100 substrate using friction stir processing technique. The variation of process parameters such as tool rotational and substrate advancing speed as well as number of FSP passes were adjusted to achieve quite uniform dispersion of Nano-particles in the Al matrix of the fabricated surface layer. Microstructural observations were carried out using optical and scanning electron microscopes. By increasing the FSP passes, uniform distribution of TiO2 particles in the matrix improved. Surface composition layer exhibited a micro-hardness value of 49 HV which was around twice of the as-received substrate. In addition wear resistance of... 

    Transient Liquid phase Bonding of AL2024 Alloy and Evaluation of Joint Properties

    , Ph.D. Dissertation Sharif University of Technology Mahmoodi Ghaznavi, Majid (Author) ; Kokabi, Amir Hossein (Supervisor) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    Transient liquid phase (TLP) bonding of Al2024-T6 alloy, using gallium interlayer, has been investigated. Bonding experiments were carried out using two basic methods; Conventional and Temperature gradient TLP bonding. Optimum values of isothermal solidification temperature and time, pressure, surface roughness, heating rate and homogenizing conditions were determined in conventional TLP bonding experiments. Aluminum oxide layer was not removed before TLP bonding to prevent gallium attack.this layer is crashed during bonding. Al2O3 particles are not soluble in the liquid and are pushed into liquid by solidification front progression. These particles are accumulated in grain boundaries and in... 

    Thermo-mechanical Study on TIG Welding of AA2024 Alloy and Subsequent Microstructural Events

    , M.Sc. Thesis Sharif University of Technology Sarmast, Ardeshir (Author) ; Serajzadeh, Siamak (Supervisor) ; Kokabi, Amir Hossein (Supervisor)
    Abstract
    In this study, temperature and Thermo-mechanical stress Distributions during and after TIG welding operations of AA2024 have been investigated by means of numerical simulation and experimental observations. Different geometries and initial microstructures, i.e. artificially and naturally aged alloys, have been selected. The model can determine the effect of welding parameters as well as mechanical fixtures on temperature and stress fields developed within metal being welded. Furthermore the subsequent aging behaviour of welded alloy (up to 70 days) has been evaluated employing hardness measurement and tensile testing. In addition, microstructural evolutions have been made utilising Scanning... 

    Atomistic Study of Iinterface Properties and Structure of Nickel-Silicon and Polyethelene-Ghraphene by Molecular Dynamics Simulation

    , M.Sc. Thesis Sharif University of Technology Amini, Hamed (Author) ; Kokabi, Amir Hossein (Supervisor) ; Simchi, Abdolreza (Supervisor)
    Abstract
    First atomistic simulation was used to study the deformation and fracture mechanisms of Ni-Si interfaces under tensile and shear loads dependent on the crystal structure of interface zone. Modified embedded atom method (MEAM) potential was utilized for molecular dynamics (MD) modeling. The simulation includes analysis of common neighbors, coordination number, least-square atomic local strain, and radial distribution function. The profound effect of interface crystallography on the tensile and shear deformation is shown. The highest tensile strength is obtained for interfaces with high plane density due to lowest atomic disorder while under shear loading planes with low density exhibit a high...