Loading...
Search for: sadighi-bonabi--r
0.028 seconds

    A fast numerical method for calculating the 3D proton dose profile in a single-ring wobbling spreading system

    , Article Australasian Physical and Engineering Sciences in Medicine ; Volume 34, Issue 3 , 2011 , Pages 317-325 ; 01589938 (ISSN) Riazi, Z ; Afarideh, H ; Sadighi Bonabi, R ; Sharif University of Technology
    Abstract
    Based on the determination of protons fluence at the phantom's surface, a 3D dose distribution is calculated inside a water phantom using a fast method. The dose contribution of secondary particles, originating from inelastic nuclear interactions, is also taken into account. This is achieved by assuming that 60% of the energy transferred to secondary particles is locally absorbed. Secondary radiation delivers approximately 16.8% of the total dose in the plateau region of the Bragg curve for monoenergetic protons of energy 190 MeV. The physical dose beyond the Bragg peak is obtained for a proton beam of 190 MeV using a Geant4 simulation. It is found that the dose beyond the Bragg peak is <... 

    Efficient photo-dissociation of CH4 and H2CO molecules with optimized ultra-short laser pulses

    , Article AIP Advances ; Volume 5, Issue 11 , 2015 ; 21583226 (ISSN) Rasti, S ; Irani, E ; Sadighi Bonabi, R ; Sharif University of Technology
    American Institute of Physics Inc  2015
    Abstract
    The fragmentation dynamics of CH4 and H2CO molecules have been studied with ultra-short pulses at laser intensityof up to 1015Wcm-2. Three dimensional molecular dynamics calculations for finding the optimized laser pulses are presented based on time-dependent density functional theory and quantum optimal control theory. A comparison of the results for orientation dependence in the ionization process shows that the electron distribution for CH4 is more isotropic than H2CO molecule. Total conversion yields of up to 70% at an orientation angle of 30o for CH4 and 65% at 900 for H2CO are achieved which lead to enhancement of dissociation probability  

    The effect of KZK pressure equation on the sonoluminescence in water and fat tissues

    , Article Physics Letters, Section A: General, Atomic and Solid State Physics ; Volume 379, Issue 36 , September , 2015 , Pages 1951-1959 ; 03759601 (ISSN) Gheshlaghi, M ; Sadighi Bonabi, R ; Ghadirifar, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract The effect of the produced light flashes from sonoluminescence (SL) on the fat tissue and water is studied. By using KZK equation as an essential equation for calculating the thermal source in bio-liquids, the effective bubble parameters in quasi-adiabatic model are calculated and compared in these systems. It is noticed that the temperature and the intensity for fat tissue are about 30% and 38% less than the ones for water respectively. These results are almost in good agreement with the only experimental measurement denoting less SL temperature in bio-liquids which present more suitable condition for using SL in such applications  

    Optimal control of dissociation of nitrogen molecule with intense ultra-short laser pulse shaping

    , Article Journal of Molecular Structure ; Volume 1083 , March , 2015 , Pages 121-126 ; 00222860 (ISSN) Rasti, S ; Irani, E ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    (GraphPresented) The quantum optimal control theory in conjunction with time dependent density functional theory is used to optimize the laser pulse shape for dissociation of nitrogen molecule. For several initial peak intensities and frequency ranges, the optimum shapes are produced and compared to determine the most efficient pulse. Ehrenfest molecular dynamics model is also used to test the dissociation process. The corresponding snapshots of density and time dependent electron localization function are presented. It is noticed that when the frequency ranges of laser pulses are doubled, it leads to 60% faster dissociation of N2 molecule  

    Dissociative ionization of methane in an elliptical pulse shaped laser field

    , Article Journal of Molecular Structure ; Volume 1079 , January , 2015 , Pages 454-459 ; 00222860 (ISSN) Irani, E ; Sadighi Bonabi, R ; Anvari, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The effect of strong femto-second laser pulses on the dissociation probability of methane has been investigated analytically in various arrangements. The ellipticity dependence of the dissociation probability at intensities from 1014 W cm-2 to 1016 W cm-2 for Ti:Sapphire laser is presented. A reliable calculation of the dissociation probability based on 3D time-dependent Schrodinger equation with an improved model of time-dependent density-functional theory is presented. These calculations are carried out for three different cases of elliptically polarized laser pulse, optimum convolution of dual short pulses, and two-color mixed nonresonant laser pulses. It is found that the rescattering... 

    Electron trajectory evaluation in laser-plasma interaction for effective output beam

    , Article Chinese Physics B ; Volume 19, Issue 6 , 2010 ; 16741056 (ISSN) Zobdeh, P ; Sadighi Bonabi, R ; Afarideh, H ; Sharif University of Technology
    2010
    Abstract
    Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and... 

    The effect of chirped intense femtosecond laser pulses on the argon cluster

    , Article Advances in High Energy Physics ; Volume 2016 , 2016 ; 16877357 (ISSN) Ghaforyan, H ; Sadighi Bonabi, R ; Irani, E ; Sharif University of Technology
    Hindawi Publishing Corporation  2016
    Abstract
    The interaction of intense femtosecond laser pulses with atomic Argon clusters has been investigated by using nanoplasma model. Based on the dynamic simulations, ionization process, heating, and expansion of a cluster after irradiation by femtosecond laser pulses at intensities up to 2 × 1017 Wcm-2 are studied. The analytical calculation provides ionization rate for different mechanisms and time evolution of the density of electrons for different pulse shapes. In this approach, the strong dependence of laser intensity, pulse duration, and laser shape on the electron energy, the electron density, and the cluster size is presented using the intense chirped laser pulses. Based on the presented... 

    Possibility of methane conversion into heavier hydrocarbons using nanosecond lasers

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 156 , 2016 , Pages 118-122 ; 13861425 (ISSN) Navid, H. A ; Irani, E ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Effect of nanosecond lasers on the methane dissociation is experimentally studied by using three different laser wavelengths at 248 nm, 355 nm and 532 nm. C2H2 generation is measured as a major reaction product in experiments and the energy consumptions in production of this component are measured as 5.8 MJ/mol, 3.1 MJ/mol and 69.0 MJ/mol, for 355 nm, 532 nm and 248 nm wavelengths, respectively. The mechanism of conversion and production of new stable hydrocarbons is also theoretically investigated. It is found that in theoretical calculations, the ion-molecule reactions should be included and this leads to a unique approach in proper explanation of the experimental measurements  

    Coupler-free surface polariton excitation and propagation with cold four-level atomic medium

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 34, Issue 9 , 2017 , Pages 1787-1795 ; 07403224 (ISSN) Asgarnezhad Zorgabad, S ; Sadighi Bonabi, R ; Hang, C ; Sharif University of Technology
    Abstract
    The possibility of the direct excitation of surface polaritons (SPs) by the free-space laser fields at the interface of negative-index metamaterial (NIMM) layer and a bottom layer of cold double Lambda-type atomic medium is investigated. The giant field enhancement (up to jE∕E0j2 ≈ 4.1), together with suppressed ohmic loss of the NIMM layer in a wide transparency window of a double electromagnetically induced transparency, results in the SPs generation. The excitation efficiency of these SPs can be effectively enhanced by applying the unidirectional atomic motion, modulation of the coupling laser characteristics, and using a probe laser with proper incident angle. Based on the special... 

    Switchable on/off drug release from gold nanoparticles-grafted dual light- and temperature-responsive hydrogel for controlled drug delivery

    , Article Materials Science and Engineering C ; Volume 76 , 2017 , Pages 242-248 ; 09284931 (ISSN) Amoli Diva, M ; Sadighi Bonabi, R ; Pourghazi, K ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A switchable dual light- and temperature-responsive drug carrier using gold nanoparticles (Au NPs)-grafted poly(dimethylacrylamide-co-acrylamide)/poly acrylic acid [P(DMA-co-AAm)/PAAc] hydrogel was prepared by free radical polymerization procedure using N,N-methylenebisacrylamide as cross-linker and ammonium persulfate as initiator. Initial P(DMA-co-AAm) hydrogel and uniformly-distributed stable Au NPs, prepared by reduction of hydrogen tetrachloroaureate (III) hydrate in the presence of trisodium citrate, were synthesized separately. Then, the prepared P(DMA-co-AAm) and Au NPs were added to an acrylic acid solution along with the cross-linker and initiator to prepare PAAc hydrogel within... 

    Laser-assisted triggered-drug release from silver nanoparticles-grafted dual-responsive polymer

    , Article Materials Science and Engineering C ; Volume 76 , 2017 , Pages 536-542 ; 09284931 (ISSN) Amoli Diva, M ; Sadighi Bonabi, R ; Pourghazi, K ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Laser assisted drug release from a synthesized plain polymer composed of poly (butyl methacrylate-co-acrylamide-co-methacrylic acid) [P(BMA-co-AAm-co-MAA)] and a metallo-polymer composed of silver nanoparticles (Ag NPs) grafted plain polymer (the nanocomposite) were studied to investigate their capability to serve as drug carriers. Positive temperature dependent swelling changes were observed for both carriers and their thermal sensitivity and thermal and optical switching properties were investigated in two buffered solutions. An acidic solution with pH = 1.2 to simulate stomach body condition and a neutral solution with pH = 7.4 to simulate intestine condition. Reversible phase transition... 

    The effect of pulsewidth of pumping pulse on the stability of distributed feedback dye laser

    , Article Laser Physics ; Volume 27, Issue 4 , 2017 ; 1054660X (ISSN) Pasandideh, K ; Rahbari, M ; Sadighi Bonabi, R ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    The generation of a single and stable picosecond pulse by distributed feedback dye laser is investigated in this work. The numerical result for the rate equation system that includes the thermal effects in the lasing medium is provided. By applying this model to Rhodamine 6G, it is found that considerable improvement in the stability of the laser can be achieved by pumping the system with narrower laser pulses. The simulation shows that if the dye solution is pumped by sub-200 ps pulse, the laser can be operated in single-pulse output mode with acceptable stability in pulsewidth over a long range of pumping intensity. This result is confirmed by a more complicated model composed of... 

    Laser-driven proton acceleration enhancement by the optimized intense short laser pulse shape

    , Article Physics of Plasmas ; Volume 24, Issue 5 , 2017 ; 1070664X (ISSN) Souri, S ; Amrollahi, R ; Sadighi Bonabi, R ; Sharif University of Technology
    Abstract
    Interactions of two distinct shapes of the pulses namely positive/negative chirped pulse and fast/slow rising-edge pulse with plasma are studied using particle-in-cell simulation. It is found that, for a pulse duration of 34 fs and intensity a0 = 12, proton acceleration could be enhanced by asymmetric pulses with either pulse envelope or pulse frequency modification. The number of accelerated protons, as well as the proton energy cut-off, is increased by asymmetric pulses. In this work, for positive chirped pulse, electrostatic field at the rear side of the target is improved by about 30%, which in turns leads to an increase in the proton energy cut-off more than 40%. Moreover, in contrary... 

    Selective photo-dissociative ionization of methane molecule with TDDFT study

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 171 , 2017 , Pages 325-329 ; 13861425 (ISSN) Irani, E ; Anvari, A ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Three dimensional calculation of control dynamics for finding the optimized laser filed is formulated using an iterative method and time-dependent density functional approach. An appropriate laser pulse is designed to control the desired products in the dissociation of methane molecule. The tailored laser pulse profile, eigenstate distributions and evolution of the efficient occupation numbers are predicted and exact energy levels of this five-atomic molecule is obtained. Dissociation rates of up to 78%, 80%, 90%, and 82% for CH2 +, CH+, C+ and C++ are achieved. Based on the present approach one can reduce the controlling costs. © 2016 Elsevier B.V  

    Excitation and propagation of surface polaritonic rogue waves and breathers

    , Article Physical Review A ; Volume 98, Issue 1 , 2018 ; 24699926 (ISSN) Asgarnezhad Zorgabad, S ; Sadighi Bonabi, R ; Sanders, B. C ; Sharif University of Technology
    American Physical Society  2018
    Abstract
    Excitation and propagation of the surface polaritonic rogue waves and breathers are investigated by proposing a coupler free optical waveguide that consists of a transparent layer, middle negative index metamaterial layer, and bottom layer of the cold four level atomic medium. In this planar optical waveguide, a giant controllable Kerr nonlinearity is achieved by sufficient field concentration and a proper set of intensities and detunings of the driven laser fields. As a result, various kinds of temporal surface polaritonic solitons, rogue waves, and breathers can be propagated in the narrow window for electromagnetically induced transparency. We find that the giant intensity and extreme... 

    Controlling the multi-electron dynamics in the high harmonic spectrum from N2O molecule using TDDFT

    , Article Journal of Chemical Physics ; Volume 148, Issue 23 , 2018 ; 00219606 (ISSN) Monfared, M ; Irani, E ; Sadighi Bonabi, R ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    In this study, high harmonic generation from a multi-atomic nitrous oxide molecule was investigated. A comprehensive three-dimensional calculation of the molecular dynamics and electron trajectories through an accurate time-dependent density functional theory was conducted to efficiently explore a broad harmonic plateau. The effects of multi-electron and inner orbitals on the harmonic spectrum and generated coherent attosecond pulses were analyzed. The role of the valence electrons in controlling the process and extending the harmonic plateau was investigated. The main issue of producing a super-continuum harmonic spectrum via a frequency shift was considered. The time-frequency... 

    Improvement of laser-driven proton beam quality by optimized intense chirped laser pulses

    , Article Physics of Plasmas ; Volume 25, Issue 1 , 2018 ; 1070664X (ISSN) Souri, S ; Amrollahi, R ; Sadighi Bonabi, R ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    The effect of pulse shaping on the intense laser-driven proton beam produced through radiation pressure acceleration as a highly efficient mechanism is investigated. In this regard, the interaction of pulses with modified frequencies, including positive and negative chirped pulses with plasma, is simulated using particle-in-cell code. The simulation results indicate that the proton acceleration could be significantly enhanced for both negative and positive chirped pulses. As a consequence of the acceleration time extension as well as the electron heating suppression, a sharper and narrower proton beam could be achieved for negative chirped pulses. The same trend is observed for all negative... 

    The effect of shear flow and the density gradient on the Weibel instability growth rate in the dense plasma

    , Article Physics of Plasmas ; Volume 25, Issue 2 , February , 2018 ; 1070664X (ISSN) Amininasab, S ; Sadighi Bonabi, R ; Khodadadi Azadboni, F ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    Shear stress effect has been often neglected in calculation of the Weibel instability growth rate in laser-plasma interactions. In the present work, the role of the shear stress in the Weibel instability growth rate in the dense plasma with density gradient is explored. By increasing the density gradient, the shear stress threshold is increasing and the range of the propagation angles of growing modes is limited. Therefore, by increasing steps of the density gradient plasma near the relativistic electron beam-emitting region, the Weibel instability occurs at a higher stress flow. Calculations show that the minimum value of the stress rate threshold for linear polarization is greater than... 

    Cavity generation and quasi-monoenergetic electron generation in laser-plasma interaction

    , Article Physics of Particles and Nuclei Letters ; Volume 6, Issue 5 , 2009 , Pages 413-416 ; 15474771 (ISSN) Zobdeh, P ; Sadighi Bonabi, R ; Afarideh, H ; Sharif University of Technology
    2009
    Abstract
    Electrons cavity acceleration is one the relativistic regime to describe the monoenergetic electron acceleration. In this work, we introduce a new ellipsoid model that could be improved the quality of the electron beam in contrast to other methods such as that using periodic plasma wake field, spherical cavity regime and plasma channel guided acceleration. The trajectory of the electron motion can be described as hyperbola, parabola or ellipsoid path. It is influenced by the position and energy of the electrons and the electrostatic potential of the cavity. We have noticed that the electron output energy is not affected by the elongation of the transverse cavity radius in the ellipsoid... 

    Synthesis of magneto-plasmonic Au-Ag NPs-decorated TiO2-modified Fe3O4 nanocomposite with enhanced laser/solar-driven photocatalytic activity for degradation of dye pollutant in textile wastewater

    , Article Ceramics International ; Volume 45, Issue 14 , 2019 , Pages 17837-17846 ; 02728842 (ISSN) Amoli Diva, M ; Anvari, A ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The synergistic effect of plasmonic Au-Ag nanoparticles (NPs) on the increase of absorption band of nano-sized TiO2 and magnetic property of Fe3O4 NPs on the separation-ability of this semiconductor was applied for preparation of eight magneto-plasmonic photocatalysts for degradation of rhodamine-6G (Rh6G) in textile wastewater. The size, structure, morphology, crystallinity and optical and magnetic properties of prepared photocatalysts have been evaluated by various characterization techniques. Their photocatalytic activities were assessed under irradiation of an intense linear 405-nm laser and a continuous solar-simulated xenon lamp. The results were demonstrated that in comparison to the...