Loading...
Search for: finite-difference-method
0.008 seconds
Total 116 records

    On application of high-order compact finite-difference schemes to compressible vorticity confinement method

    , Article Aerospace Science and Technology ; Volume 46 , October–November , 2015 , Pages 398-411 ; 12709638 (ISSN) Sadri, M ; Hejranfar, K ; Ebrahimi, M ; Sharif University of Technology
    Elsevier Masson SAS  2015
    Abstract
    The main goal of this study is to assess the application of high-order compact finite-difference schemes for the solution of the Euler equations in conjunction with the compressible vorticity confinement method on both uniform Cartesian and curvilinear grids. Here, the spatial discretization of the governing equations is performed by the fourth-order compact finite-difference scheme and the temporal term is discretized by the fourth-order Runge-Kutta method. To stabilize the numerical solution, appropriate dissipation terms are applied and a detail assessment is performed to study the effects of the values of confinement and dissipation coefficients on the solution to reasonably preserve the... 

    Propagation noise calculations in VVER-type reactor core

    , Article Progress in Nuclear Energy ; Volume 78 , January , 2015 , Pages 10-18 ; 01491970 (ISSN) Malmir, H ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Neutron noise induced by propagating disturbances in VVER-type reactor core is addressed in this paper. The spatial discretization of the governing equations is based on the box-scheme finite difference method for triangular-z geometry. Using the derived equations, a 3-D 2-group neutron noise simulator (called TRIDYN-3) is developed for hexagonal-structured reactor core, by which the discrete form of both the forward and adjoint reactor dynamic transfer functions (in the frequency domain) can be calculated. In addition, both types of noise sources, namely point-like and traveling perturbations, can be modeled by TRIDYN-3. The results are then benchmarked in different cases. Considering the... 

    Neural implant stimulation based on TiO2 nanostructured arrays; A multiphysics modeling verification

    , Article IECBES 2014, Conference Proceedings - 2014 IEEE Conference on Biomedical Engineering and Sciences: "Miri, Where Engineering in Medicine and Biology and Humanity Meet", 8 December 2014 through 10 December 2014 ; December , 2015 , Pages 677-680 ; 9781479940844 (ISBN) Sasanpour, P ; Mohammadpour, R ; Amiri, K ; Silterra; University of Malaya ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Exploiting of the nanostructure arrays as a promising candidate for excitation of neural cells has been analyzed. Based on the importance of the coupling effect between electrode and neuron, a multiphyscis modeling approach has been proposed. The model incorporates theoretically both structural effects (size, geometry) and electrophysiological effects. The system of equations for proposed model has been solved numerically using Finite Element Method for Poisson equation and Finite Difference Method for Cable equation. In this regards we have combined the system of equations in COMSOL platform with Matlab interface accordingly. We have analyzed the effect of excitation of neuron with an extra... 

    Active vibration control of a cmos-mems nano-newton capacitive force sensor for bio application using PZT

    , Article Advanced Materials Research, San Diego, CA ; Volume 628 , 2013 , Pages 317-323 ; 10226680 (ISSN) ; 9783037855706 (ISBN) Mozhdehi, R. J ; Selkghafari, A ; Zabiholah, A ; Meghdari, A ; Sharif University of Technology
    Abstract
    This paper reports the design of an optimal controller to prevent suppressvertical vibration due to undesired out of plane excitations generated by environment or gripper during manipulation for a CMOS-MEMS Nano-Newton capacitive force sensor applied for biomedical applications. Undesired out of plane excitations generated by environment or gripper during manipulation is the most prevalent source of vertical vibration in this type of sensors. To suppress the vibrational movement a PZT 5A is used as actuation mechanism. Discrete element method DEM model and Modal analysis were used to find dominant natural frequencies and mode shape vectors. To eliminate out of plane excitation an optimal... 

    Enhancement of full-duplex efficiency in an asymmetric IEEE 802.11-based WLAN

    , Article IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 4 September 2016 through 8 September 2016 ; 2016 ; 9781509032549 (ISBN) Goshtasbpour, S ; Ashtiani, F ; Mirmohseni, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this paper, we propose a new packet prioritization scheme in order to exploit the full-duplex (FD) capability of the access point (AP) more efficiently, in an asymmetric IEEE 802.11-based WLAN, i.e., only the AP has the in-band FD communications capability. In this respect, we consider a modified version of IEEE 802.11 MAC protocol such that at any transmission opportunity in which AP has the role of the transmitter or the receiver, it does the best to select a partner packet to be simultaneously received or transmitted, respectively. The key feature of our proposed partner packet selection scheme is to reduce the idle time intervals that in an FD transmission opportunity, due to... 

    New insight into H2S sensing mechanism of continuous SnO2-CuO bilayer thin film: A theoretical macroscopic approach

    , Article Journal of Physical Chemistry C ; Volume 120, Issue 14 , 2016 , Pages 7678-7684 ; 19327447 (ISSN) Boroun, Z ; Ghorbani, M ; Moosavi, A ; Mohammadpour, R ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    SnO2-CuO is one the most promising systems for detection of detrimental H2S gas. Although previous experimental research has suggested a sulfidation reaction to explain selectivity toward H2S, little is known about the origin of change of electrical response of this system by changing the H2S gas concentration. In this study the relation between sensing response of continuous SnO2-CuO bilayer thin film and H2S gas concentration is computed based on changeability of chemical composition of covellite CuxS. For this purpose, chemical activity of sulfur as a function of atomic fraction in covellite copper sulfide is estimated using Gibbs energies of formation and chemical thermodynamics. By... 

    Effects of viscoelastic supports on the behavior of bridges under moving vehicles

    , Article Scientia Iranica ; Volume 24, Issue 4 , 2017 , Pages 1751-1769 ; 10263098 (ISSN) Samanipour, K ; Vafai, H ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    One of the most important problems facing structural engineers is the analysis of dynamic behavior of bridges subjected to moving vehicles. In addition, viscoelastic supports under bridges change their dynamic behavior under passing traffic loads. This paper presents how to model a bridge with viscoelastic supports and how the maximum dynamic stress of bridges changes during the passing of moving vehicles. Furthermore, this paper presents an algorithm to solve the governing equation of the bridge with viscoelastic supports as well as the equation of motion of a real European truck with different speeds, simultaneously. Using viscoelastic supports with appropriate characteristics can make a... 

    Assessment of characteristic boundary conditions based on the artificial compressibility method in generalized curvilinear coordinates for solution of the Euler equations

    , Article Computational Methods in Applied Mathematics ; Volume 18, Issue 4 , 2018 , Pages 717-740 ; 16094840 (ISSN) Parseh, K ; Hejranfar, K ; Sharif University of Technology
    De Gruyter  2018
    Abstract
    The characteristic boundary conditions are applied and assessed for the solution of incompressible inviscid flows. The two-dimensional incompressible Euler equations based on the artificial compressibility method are considered and then the characteristic boundary conditions are formulated in the generalized curvilinear coordinates and implemented on both the far-field and wall boundaries. A fourth-order compact finite-difference scheme is used to discretize the resulting system of equations. The solution methodology adopted is more suitable for this assessment because the Euler equations and the high-accurate numerical scheme applied are quite sensitive to the treatment of boundary... 

    Delayed data offloading based on full-duplex D2D communications in a cellular network

    , Article 2018 Iran Workshop on Communication and Information Theory, IWCIT 2018, 25 April 2018 through 26 April 2018 ; 2018 , Pages 1-6 ; 9781538641491 (ISBN) Karami, F ; Mirmohseni, M ; Ashtiani, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, we propose a new delayed data offloading scheme by exploiting full-duplex (FD) device-to-device (D2D) communications. To this end, we consider a scenario in which a common file is requested by a subset of users in different times and with different maximum tolerable delays. Moreover, a maximum specific bandwidth is dedicated for data transmission. In order to send the file in the specific bandwidth, we use multicasting alongside FD D2D communications. Thanks to the fact that users have different deadlines, we divide them into non-overlapping groups, i.e., coalitions, to receive the file in distinct intervals. In order to guarantee the tolerable delay of all users, a coalition... 

    Analytical investigation of composite sandwich beams filled with shape memory polymer corrugated core

    , Article Meccanica ; Volume 54, Issue 10 , 2019 , Pages 1647-1661 ; 00256455 (ISSN) Akbari Azar, S ; Baghani, M ; Zakerzadeh, M. R ; Shahsavari, H ; Sohrabpour, S ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Shape memory polymers (SMPs) are a class of smart materials which can recover their shape even after many shape changes in application of an external stimulus. In this paper, flexural behavior of a composite beam, constructed of a corrugated part filled with SMPs, is studied. This composite beam is applicable in sensor and actuator applications. Since the corrugated profiles display higher stiffness-to-mass ratio in the transverse to the corrugation direction, the beams with a corrugated part along the transverse direction are stiffer than ones with a corrugated part along the length. Employing a developed constitutive model for SMPs and the Euler–Bernoulli beam theory, the behavior of the... 

    Secrecy performance of friendly jammer assisted cooperative NOMA systems with internal eavesdroppers

    , Article 31st IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2020, 31 August 2020 through 3 September 2020 ; Volume 2020-August , 2020 Abolpour, M ; Aissa, S ; Mirmohseni, M ; Aref, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In non-orthogonal multiple access (NOMA) systems, serving multiple users in shared resource blocks can allow untrusted users to overhear the messages of other users. In this context, we study a network consisting of a base station (BS), a near user and a far user, where the latter attempts to overhear the message of the former. The near user is a full-duplex (FD) node that can also act as a relay. Two operating scenarios are considered: 1) friendly jammer (FJ), where the FD node broadcasts noise for degrading the channel between the BS and the far user, while receiving data from the BS; and 2) friendly jammer relay (FJR), where, in addition to degrading the channel between the BS and the far... 

    Delay-Optimal cooperation policy in a slotted aloha full-duplex wireless network: static approach

    , Article IEEE Systems Journal ; Volume 14, Issue 2 , 2020 , Pages 2257-2268 Vaezi, K ; Ashtiani, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    We consider a cooperative wireless communication network comprising two full-duplex (FD) nodes transmitting to a common destination based on slotted Aloha protocol. Each node has exogenous arrivals and also may relay some of the unsuccessfully transmitted packets of the other node. In this article, we find the optimal static policies of nodes in order to minimize the sum of the average transmission delays, while the average transmission delay of each node is constrained. The static policy of each node specifies the probability of accepting an unsuccessfully transmitted packet of the other node and how the node prioritizes its transmissions. We show that in the optimal policies, just the node... 

    The application of corrugated parallel bundle model to immobilized cells in porous microcapsule membranes

    , Article Journal of Membrane Science ; Volume 311, Issue 1-2 , 2008 , Pages 159-164 ; 03767388 (ISSN) Biria, D ; Zarrabi, A ; Khosravi, A ; Sharif University of Technology
    2008
    Abstract
    To describe immobilized cells in porous microcapsule membranes with straight pores, a novel model called corrugated parallel bundle model (CPBM) was utilized. In this model, a network was developed with 10 main pores each composing 10 pore elements. Cell growth kinetic in the network was examined using non-structural models. Effectiveness factor and pore plugging time were calculated by solving reaction-diffusion equation set via finite difference method. The findings revealed that diffusion coefficient for lower order reactions will create a lesser impact on the reduction of effectiveness factor. These findings also indicated that the use of such supporting carrier for cell immobilization... 

    A novel numerical solution to the diffraction term in the KZK nonlinear wave equation

    , Article Proceedings of the 38th Annual Symposium of Ultrasonic Industry Association, UIA 2009, 23 March 2009 through 25 March 2009, Vancouver, BC ; 2009 ; 9781424464296 (ISBN) Hajihasani, M ; Farjami, Y ; Gharibzadeh, S ; Tavakkoli, J ; Sharif University of Technology
    Abstract
    Nonlinear ultrasound modeling is finding an increasing number of applications in both medical and industrial areas where due to high pressure amplitudes the effects of nonlinear propagation are no longer negligible. Taking nonlinear effects into account makes the ultrasound beam analysis more accurate in these applications. One of the most widely used nonlinear models for propagation of 3D diffractive sound beams in dissipative media is the KZK (Khokhlov, Kuznetsov, Zabolotskaya) parabolic nonlinear wave equation. Various numerical algorithms have been developed to solve the KZK equation. Generally, these algorithms fall into one of three main categories: frequency domain, time domain and... 

    Modeling and Characterizing Transient Behavior of Distillation Columns with Travelling Wave Theory

    , M.Sc. Thesis Sharif University of Technology Hemmati Alam, Narjes (Author) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    Simulation and controlling nonlinear process is one of the challenging problems in academic and industrial research. Saving data for keeping history of process or arising number of calculation for optimization in control design, is forcing to decrease number of equation or order of system. One of the methods to decrease the order of distillation process is using the travelling wave theory. This solution shows god accuracy for simulation the behavior of distillation column. On the other hand finite difference method as a solver for distillation equation takes some time to converge to steady state condition and the numbers of calculation in this method are high. Finite difference method is... 

    Development of a Computer Code for Thermo Hydraulics Analysis of Prismatic High Temperature Gas Cooled Reactors

    , M.Sc. Thesis Sharif University of Technology Naderi, Mohammad Hossein (Author) ; Ghofrani, Mohammad Bagher (Supervisor) ; Jafari, Jalil (Supervisor)
    Abstract
    A prismatic high temperature gas-cooled reactor (HTGR), which is a graphite moderated, helium-cooled reactor, is a promising candidate for next generation nuclear power plant in that it enables applications, such as hydrogen production or process heat for petrochemical by supplying heat with core outlet temperatures as high as 1000°C. A Thermal Hydraulic Analysis Code (THAC) for gas-cooled reactors has been developed. THAC implicitly solves heat transfer equation of fuel, graphite block and helium. Three types of fuel pins were considered; solid fuel pin, fuel pins with inside holes and annular fuels with coolant flow from its inside and outside surfaces. THAC predicts axial and radial... 

    Design and Implementation of Near Field Excitation System for Spectroscopy of Biological Species

    , Ph.D. Dissertation Sharif University of Technology Sasanpour, Pezhman (Author) ; Rashidian, Bizhan (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Shahrokhian, Saeed (Co-Advisor)
    Abstract
    The main goal of this project is analysis, design and implementation of scanning near field optical system for detection of biological species. The activities fall in two main category. Theoretical and experimental. In theoretical part, after studying different models describing near field interaction, we have developed software for computationally analysis of nonlinear interaction of light with nanostructures, considering third order nonlinear susceptibility and dispersion behavior of permittivity for metallic nanostructures. The software implements three dimensional finite difference time domain (FDTD) method for analysis of interaction of electromagnetic wave with matter. In developed... 

    Development of a Computer Code for Thermal Hydraulic Design of a High Temperature Gas Cooled Reactor Core

    , M.Sc. Thesis Sharif University of Technology Khosravi Mirzaee, Morteza (Author) ; Ghofrani, Mohammad Bagher (Supervisor) ; Jafari, Jalil (Supervisor)
    Abstract
    High temperature gas cooled reactors (HTGR) are one of the most promising reactors in the new generation of world commercial reactors. They are divided into two main categories: Prismatic gas cooled reactors and pebble bed gas cooled reactors. These reactors have many advantages, such as inherent safety, high thermodynamic efficiency and the possibility of producing hydrogen. One of the most important challenges in developing these reactors is providing appropriate codes in design and simulating their performance. Two codes have been developed in this thesis. The first, THFAM, is a steady state thermal hydraulic code which helps in analyzing a fuel assembly. The second, named THCM is... 

    Modeling of Liquid-Vapor Two Phase Flow through Nozzle

    , M.Sc. Thesis Sharif University of Technology Varzideh, Mohammad (Author) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    This thesis is about modeling of liquid-vapor two phase flows through nozzle. Liquid-vapor two phase flow is very applicable in industries such as boilers, expansion valves, refrigeration and sudden failures in pipelines. Two models are used for modeling of fluid flow through nozzle, transient and steady state. In Both model the solution field is considered as saturated liquid and vapor and the mass, momentum and energy equations as well as equation of state is used for describing of fluid flow properties. Homogeneous equilibrium model is used and for complete modeling of fluid flow heat transfer and friction force is also considered.
    Numerical solutions are used for solving of the... 

    Development of Compact Finite-Difference Lattice Boltzmann Method for Solving Two-Phase Flows

    , Ph.D. Dissertation Sharif University of Technology Ezzatneshan, Eslam (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present thesis, a high-order compact finite-difference lattice Boltzmann method (CFDLBM) is proposed and applied for an accurate and efficient numerical simulation of liquid-vapor two-phase flows. At first, the stability of the fourth-order CFDLBM is performed by using the von Neumann stability analysis for the D2Q7 and D2Q9 lattices. The stability analysis indicates that the CFDLBM proposed is stable and thus suitable for the simulation of high Reynolds number flows. The high-order CFDLBM is then developed and applied to accurately compute 2-D and 3-D incompressible flows in the Cartesian coordinates. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized...