Loading...
Search for: cmos-integrated-circuits
0.007 seconds
Total 164 records

    Behavioral modeling of clock feed-through and channel charge injection non-ideal effects in SIMULINK for switched-capacitor integrator

    , Article Simulation Modelling Practice and Theory ; Volume 18, Issue 5 , May , 2010 , Pages 483-499 ; 1569190X (ISSN) Torkzadeh, P ; Atarodi, M ; Sharif University of Technology
    2010
    Abstract
    Sigma-Delta modulator ADCs used in signal processing applications usually, are implemented by switched-capacitor (SC) circuits and CMOS transmission gates due to its simplicity for implementation. Channel charge injection (CCI) and clock feed-through (CFT) are two major non-ideal effects existing in TG switches and SC integrators reducing modulator total SNR, its linearity and its total gain. This paper presents a precise model for SC integrator including CCI and CFT non-ideal effects in MATLAB SIMULINK environment which allows designers to perform time-domain behavioral simulations of switched-capacitor (SC) Sigma-Delta modulators. Evaluation and validation of extracted models were... 

    A fully integrated 0.18-μm CMOS transceiver chip for X-band phased-array systems

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 60, Issue 7 , 2012 , Pages 2192-2202 ; 00189480 (ISSN) Gharibdoust, K ; Mousavi, N ; Kalantari, M ; Moezzi, M ; Medi, A ; Sharif University of Technology
    Abstract
    An X-band core chip is designed and fabricated in 0.18-μm CMOS technology, which can significantly reduce the monolithic microwave integrated circuit count required for realizing an active beam-former T/R module. The core chip consists of two RX/TX paths, each of which includes a 6-b phase shifter, a 6-b attenuator, along with two input and output amplifiers. A new architecture for realizing such a core chip system and a low loss circuit for 5.625° phase shift block are proposed. The overall rms phase and gain errors are better than 2° and 0.25 dB, respectively, in both RX/TX paths. The gain of each path is around 12 dB, while the output 1-dB compression point is higher than 10 dBm over the... 

    An audio band low voltage CT-ΔΣ modulator with VCO-based quantizer

    , Article 18th IEEE International Conference on Electronics, Circuits, and Systems, ICECS 2011, 11 December 2011 through 14 December 2011 ; December , 2011 , Pages 232-235 ; 9781457718458 (ISBN) Yousefzadeh, B ; Sharifkhani, M ; Sharif University of Technology
    Abstract
    This paper presents the design and implementation of a low power, low voltage, continuous time delta sigma modulator for audio band in 90 nm CMOS technology. A VCO-based integrator and quantizer are used. Inherent dynamic element matching (DEM) of the quantizer eliminates the need for explicit DEM logic which results in a short excess-delay and power saving. Simulation results show that the modulator achieves 78 dB SNDR and 87 dB SNR in a 20 kHz input bandwidth and dissipates 106 μW from 1 V supply. The power consumption for different parts is discussed  

    Significant crosstalk reduction using all-dielectric CMOS-compatible metamaterials

    , Article IEEE Photonics Technology Letters ; Volume 28, Issue 24 , 2016 , Pages 2787-2790 ; 10411135 (ISSN) Khavasi, A ; Chrostowski, L ; Lu, Z ; Bojko, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    A recent computational result suggests that highly confined modes can be realized by all-dielectric metamaterials. This substantially decreases crosstalk between dielectric waveguides, paving the way for high-density photonic circuits. Here, we experimentally demonstrate, on a standard silicon-on-insulator platform, that using a simple metamaterial between two silicon strip waveguides results in about a tenfold increase in coupling length. The proposed structure may lead to significant reduction in the size of devices in silicon photonics  

    Pipelining method for low-power and high-speed SAR ADC design

    , Article Analog Integrated Circuits and Signal Processing ; Volume 87, Issue 3 , 2016 , Pages 353-368 ; 09251030 (ISSN) Fazel, Z ; Saeedi, S ; Atarodi, M ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    A low power analog to digital converter (ADC), based on a pipelining method employed in successive approximation register (SAR) architecture is presented. This structure is a two-stage pipeline SAR ADC with asymmetrical time interleaved (TI) channels, aimed to reach sampling rate as high as about threefold of a conventional SAR ADC while benefiting from its low power consumption and small area. Passive residue conversion without inter-stage amplifier and symphonic collaboration of stages are employed to design a low power, high speed, and accurate converter. In the proposed architecture, every signal sample experiences equal comparator offset during its conversion due to the applied novel... 

    Wireless interfacing to cortical neural recording implants using 4-FSK modulation scheme

    , Article IEEE International Conference on Electronics, Circuits, and Systems, 6 December 2015 through 9 December 2015 ; Volume 2016 March , 2016 , Pages 221-224 ; 9781509002467 (ISBN) Eslampanah Sendi, M. S ; Judy, M ; Molaei, H ; Sodagar, A. M ; Sharifkhani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    This paper used a 4-level frequency shift keying (4-FSK) modulation scheme to enhance the density of wireless data transfer from implantable biomedical microsystems to the outside world. Modeling and simulation of the wireless channel for 4-FSK modulation in the case of a neural recording implant has been done. To realize the 4-FSK scheme, the modulator and demodulator circuits are proposed, designed and simulated in a 0.18-μm CMOS process, and in the 174-216 MHz frequency band at a data rate of 13.5 Mbps. Operated using a 1.8 V supply voltage, the modulator circuit consumes a power of 7.8 μW  

    Layout-Based modeling and mitigation of multiple event transients

    , Article IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ; Volume 35, Issue 3 , 2016 , Pages 367-379 ; 02780070 (ISSN) Ebrahimi, M ; Asadi, H ; Bishnoi, R ; Baradaran Tahoori, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Radiation-induced multiple event transients (METs) are expected to become more frequent than single event transients (SETs) at nanoscale CMOS technology nodes. In this paper, a fast and accurate layout-based soft error rate (SER) assessment technique with consideration of both SET and MET fault models is presented. Despite existing techniques in which the adjacent MET sites are extracted from a logic-level netlist, we conduct a comprehensive layout analysis to obtain MET adjacent cells. Experimental results reveal that the layout-based technique is the only viable solution for identification of the adjacent cells as netlist-based techniques considerably underestimate the overall SER.... 

    A noise shaped flash time to digital converter for all digital frequency synthesizers

    , Article ECCTD 2009 - European Conference on Circuit Theory and Design Conference Program, 23 August 2009 through 27 August 2009 ; 2009 , Pages 898-901 ; 9781424438969 (ISBN) Ensafdaran, M ; Atarodi, M ; Sharif University of Technology
    Abstract
    Reduction of Time to Digital Converter (TDC) quantization related phase noise is one of the most important challenges in all digital frequency synthesizer design. In this paper, a new structure is proposed to shape the quantization noise of flash TDCs. To verify effectiveness of the proposed general noise shaping technique, it is employed on a single delay chain flash TDC. To compensate the process variation effects on the implemented circuits, a calibration technique is also proposed. The design is implemented in 0.18μm CMOS technology. Simulations show effective noise shaping of output quantization noise  

    A highly-linear dual-gain CMOS low-noise amplifier for X-band

    , Article IEEE Transactions on Circuits and Systems II: Express Briefs ; 2017 ; 15497747 (ISSN) Meghdadi, M ; Piri, M ; Medi, A ; Sharif University of Technology
    Abstract
    A highly linear X-band low-noise amplifier (LNA) is proposed and implemented in a standard 0.18-μm CMOS technology. The LNA features both high and low-gain operation modes. In its normal high-gain mode, the LNA shows a small-signal gain of 13.6 dB with an IIP3 of +9.5 dBm and a noise figure of 4.7 dB. The two-stage amplifier draws 90 mA from the 3.3V power supply to achieve +14.8 dBm output P1dB (+2.2 dBm input P1dB). In the low-gain mode, the gain is reduced by about 10 dB to further enhance the linearity and to accommodate very large blockers. Accordingly, the input P1dB is enhanced to +13.7 dBm while the noise figure is increased by 8.1 dB. A technique is also introduced to maintain the... 

    A low-power temperature-compensated CMOS peaking current reference in subthreshold region

    , Article Proceedings - IEEE International Symposium on Circuits and Systems, 28 May 2017 through 31 May 2017 ; 2017 ; 02714310 (ISSN) ; 9781467368520 (ISBN) Eslampanah, M. S ; Kananian, S ; Zendehrouh, E ; Sharifkhani, M ; Sodagar, A. M ; Shabany, M ; Sharif University of Technology
    Abstract
    In this paper, a new method to achieve very small current reference levels on integrated circuits with immunity to temperature variations using peaking current source with MOSFETs operating in subthreshold region is proposed. By adding a source degeneration resistor to the conventional peaking current source architecture, a zero temperature coefficient current can be generated. The proposed low-power circuit operating in the weak inversion region is designed, simulated, and fabricated in a 0.18-μm standard CMOS process. Measurement results verify the circuit operation with about 5% variation over the span of -40° C to +100° C (industrial temperature grade). The supplied current is designed... 

    Temperature compensation in CMOS peaking current references

    , Article IEEE Transactions on Circuits and Systems II: Express Briefs ; Volume 65, Issue 9 , 2018 , Pages 1139-1143 ; 15497747 (ISSN) Eslampanah Sendi, M. S ; Kananian, S ; Sharifkhani, M ; Sodagar, A. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this brief, modifications to the peaking current reference with MOS transistors operating in the subthreshold and the strong inversion region has been proposed by means of which very small currents with immunity to temperature variations on a chip can be obtained. Temperature compensation can be done by adding a source degeneration resistor to the conventional peaking current source structure. Design examples are provided for both weak and strong inversion operations with output currents of 1.5 μA and 40 μ A with less than 4% and 10% variation over the span of-40 °C to +100 °C, respectively. A prototype of the circuit operating in the weak and strong inversion region is designed,... 

    A comprehensive survey on UHF RFID rectifiers and investigating the effect of device threshold voltage on the rectifier performance

    , Article Analog Integrated Circuits and Signal Processing ; Volume 96, Issue 1 , 2018 , Pages 21-38 ; 09251030 (ISSN) Gharaei Jomehei, M ; Sheikhaei, S ; Fotowat Ahmady, A ; Forouzandeh, B ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Rectifiers are an integral part of power harvesting systems. In this paper, the literature on RF power rectifiers is surveyed, starting from the well-known voltage doubler. Effects of using low turn-on voltage devices on forward and reverse losses, and therefore, on conversion efficiency, is discussed. Samples of rectifiers with external devices, such as Schottky diodes are presented. Idea of external Vth cancellation through a rechargeable battery, self Vth cancellation, and floating gate transistors with charge injection onto the gates are demonstrated. Then, standard bridge rectifier and its modified versions, including Vth cancellation technique, are explained. Using low voltage devices... 

    SRAM cell stability: a dynamic perspective

    , Article IEEE Journal of Solid-State Circuits ; Volume 44, Issue 2 , 2009 , Pages 609-619 ; 00189200 (ISSN) Sharifkhani, M ; Sachdev, M ; Sharif University of Technology
    2009
    Abstract
    SRAM cell stability assessment is traditionally based on static criteria of data stability requiring three coincident points in DC butterfly curves. This definition is based on static (DC) characteristics of the cell transistors. We introduce the dynamic criteria of cell data stability knowing that the cell operates in a dynamic environment alternating between access and non-access conditions. The proposed definition of the dynamic data stability criteria introduces a new bound for the cell static noise margin (SNM). It reveals that the true noise margin of the cell can be made considerably higher than the conventional SNM once the cell access time is sufficiently shorter than the cell... 

    Analysis and design of a DC to 18 GHz 6-bit attenuator with simultaneous phase and gain error correction

    , Article AEU - International Journal of Electronics and Communications ; Volume 110 , 2019 ; 14348411 (ISSN) Ahmadikia, A ; Karami, P ; Atarodi, S. M ; Sharif University of Technology
    Elsevier GmbH  2019
    Abstract
    In this paper the design of a digital step attenuator with simultaneous low phase and gain error characteristics is investigated. First, the loading effect of the consecutive blocks of an N-bit attenuator on the precision of the attenuation levels is analyzed. Then a modified structure to decrease the loading effect as well as the phase error of the attenuator blocks is presented. A comprehensive analysis of the circuit is performed and some design guidelines have described. Finally, a 6-bit attenuator with attenuation range of 0.5–31.5 dB and resolution of 0.5 dB is implemented in 0.18 µm complementary metal–oxide-semiconductor (CMOS) technology. The root mean square (RMS) gain error and... 

    Design of a 2-12-GHz bidirectional distributed amplifier in a 0.18- mu m CMOS technology

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 67, Issue 2 , 2019 , Pages 754-764 ; 00189480 (ISSN) Alizadeh, A ; Meghdadi, M ; Yaghoobi, M ; Medi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper presents the design and implementation of a bidirectional distributed amplifier (BDDA) in a 0.18- boldsymbol mu ext{m} CMOS process. The performance of the BDDA is theoretically analyzed, and the optimum number of gain stages ( n-{ ext {opt}} ), maximum achievable power gain ( G-{P} ), and circuit bandwidth are formulated. In addition, a new formula for proper choice of the number of DA stages (i.e., n ) is offered where dc-power consumption of the circuit ( P-{ ext {dc}} ) is also considered. This formula optimizes G-{P}/P-{ ext {dc}} , and it is preferred over the conventional n-{ ext {opt}} formula. To validate the theoretical analyses, a 2-12-GHz BDDA with high output 1-dB... 

    A 125-ps 8-18-GHz CMOS integrated delay circuit

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 67, Issue 1 , 2019 , Pages 162-173 ; 00189480 (ISSN) Ghazizadeh, M. H ; Medi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    A wideband integrated delay chain chip with 5-bit main delay control, two error correction bits, maximum delay of 125-and 3.9-ps delay resolution, designed and fabricated in a 0.18-μ m CMOS technology is presented. This delay chain is a cascade of seven passive internal-switched delay blocks which the five main bits are based on novel delay structures. The proposed delay structures are similar to second-, fourth-, and sixth-order all-pass networks and are robust to mismatch effects of resistive parasitics of transistor switches. Measurement results of the fabricated delay chain show 15.2-23.3-dB insertion loss and less than 3.3-ps rms delay error over the intended frequency band from 8-18... 

    A 125-ps 8-18-GHz CMOS integrated delay circuit

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 67, Issue 1 , 2019 , Pages 162-173 ; 00189480 (ISSN) Ghazizadeh, M. H ; Medi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    A wideband integrated delay chain chip with 5-bit main delay control, two error correction bits, maximum delay of 125-and 3.9-ps delay resolution, designed and fabricated in a 0.18-μ m CMOS technology is presented. This delay chain is a cascade of seven passive internal-switched delay blocks which the five main bits are based on novel delay structures. The proposed delay structures are similar to second-, fourth-, and sixth-order all-pass networks and are robust to mismatch effects of resistive parasitics of transistor switches. Measurement results of the fabricated delay chain show 15.2-23.3-dB insertion loss and less than 3.3-ps rms delay error over the intended frequency band from 8-18... 

    CMOS integrated delay chain for X-Ku band applications

    , Article Analog Integrated Circuits and Signal Processing ; Volume 102, Issue 1 , 2020 , Pages 213-224 Ghazizadeh, M. H ; Daryabari, F ; Medi, A ; Sharif University of Technology
    Springer  2020
    Abstract
    A wideband integrated delay chain chip with 5-bit delay control, maximum delay of 120 ps and 3.9 ps delay resolution, designed and fabricated in 0.18 μ m CMOS technology is presented. Second-order all pass networks (APN) are used as delay structures in this delay circuit. In the design of the two MSB bits of the fabricated chip, a new design approach is used which allows higher group delay to be achieved with fewer number of passive second-order APN circuits. This would in turn reduce insertion loss of the designed delay control chain. Measurement results of the fabricated delay chain show 12.6–20.5 dB insertion loss and less than 3.3 ps RMS delay error over the intended frequency band from... 

    A bridge technique for memristor state programming

    , Article International Journal of Electronics ; Volume 107, Issue 6 , 2020 , Pages 1015-1030 Tarkhan, M ; Maymandi Nejad, M ; Haghzad Klidbary, S ; Bagheri Shouraki, S ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    In order to effectively use a memristor in analog circuits, its memristance should be adjusted to a desired value between its limits. Since the maximum and minimum required memristance typically varies considerably between different types of memristors, it is almost impossible to tune the resistance of each memristor based on a reference resistor. Which is mostly done using some programmer circuits. Moreover, those programming strategies involving pulses are time-consuming and they impose high hardware headroom. In this paper, a novel CMOS circuit is presented for programming memristors. A Wheatstone bridge circuit is used to measure the current memristance, while the programming current is... 

    A novel zero-aware read-static-noise-margin-free SRAM Cell for high density and high speed cache application

    , Article 2008 9th International Conference on Solid-State and Integrated-Circuit Technology, ICSICT 2008, Beijing, 20 October 2008 through 23 October 2008 ; 2008 , Pages 876-879 ; 9781424421855 (ISBN) Azizi Mazreah, A ; Manzuri Shalmani, M. T ; Noormandi, R ; Mehrparvar, A ; Sharif University of Technology
    2008
    Abstract
    To help overcome limits to the density and speed of conventional SRAMs, we have developed a five-transistor SRAM cell. The newly developed CMOS five-transistor SRAM cell uses one word-line and one bit-line during read/write operation. This cell retains its data with leakage current and positive feedback without refresh cycle. The new cell size is 18% smaller than a conventional six-transistor SRAM cell using same design rules. Simulation result in standard 0.25μm CMOS technology shows purposed cell has correct operation during read/write and idle mode. The average delay of new cell is 20% smaller than a six-transistor SRAM cell. © 2008 IEEE