Loading...
Search for: finite-difference-method
0.009 seconds
Total 169 records

    Preconditioned characteristic boundary conditions based on artificial compressibility method for solution of incompressible flows

    , Article Journal of Computational Physics ; Volume 345 , 2017 , Pages 543-564 ; 00219991 (ISSN) Hejranfar, K ; Parseh, K ; Sharif University of Technology
    Abstract
    The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter... 

    Effects of viscoelastic supports on the behavior of bridges under moving vehicles

    , Article Scientia Iranica ; Volume 24, Issue 4 , 2017 , Pages 1751-1769 ; 10263098 (ISSN) Samanipour, K ; Vafai, H ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    One of the most important problems facing structural engineers is the analysis of dynamic behavior of bridges subjected to moving vehicles. In addition, viscoelastic supports under bridges change their dynamic behavior under passing traffic loads. This paper presents how to model a bridge with viscoelastic supports and how the maximum dynamic stress of bridges changes during the passing of moving vehicles. Furthermore, this paper presents an algorithm to solve the governing equation of the bridge with viscoelastic supports as well as the equation of motion of a real European truck with different speeds, simultaneously. Using viscoelastic supports with appropriate characteristics can make a... 

    Evaluation of behaviors of earth and rockfill dams during construction and initial impounding using instrumentation data and numerical modeling

    , Article Journal of Rock Mechanics and Geotechnical Engineering ; Volume 9, Issue 4 , 2017 , Pages 709-725 ; 16747755 (ISSN) Rashidi, M ; Haeri, S. M ; Sharif University of Technology
    Abstract
    In this study, the behavior of gavoshan dam was evaluated during construction and the first impounding. A two-dimensional (2D) numerical analysis was conducted based on a finite difference method on the largest cross-section of the dam using the results of instrument measurements and back analysis. These evaluations will be completed in the case that back analysis is carried out in order to control the degree of the accuracy and the level of confidence of the measured behavior since each of the measurements could be controlled by comparing it to the result obtained from the numerical model. Following that, by comparing the results of the numerical analysis with the measured values, it is... 

    The size-dependent electromechanical instability of double-sided and paddle-type actuators in centrifugal and Casimir force fields

    , Article Scientia Iranica ; Volume 24, Issue 3 , 2017 , Pages 1077-1090 ; 10263098 (ISSN) Mokhtari, J ; Farahani, M ; Kanani, A ; Rach, R ; Keivani, M ; Abadyan, M ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    The present research is devoted to theoretical study of the pull-in performance of double-sided and paddle-type NEMS actuators fabricated from cylindrical nanowire operating in the Casimir regime and in the presence of the centrifugal force. D'Alembert's principle was used to transform the angular velocity into an equivalent static, centrifugal force. Using the couple stress theory, the constitutive equations of the actuators were derived. The equivalent boundary condition technique was applied to obtain the governing equation of the paddle-type actuator. Three distinct approaches, the Duan-Adomian Method (DAM), Finite Difference Method (FDM), and Lumped Parameter Model (LPM), were applied... 

    Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    , Article Theoretical and Computational Fluid Dynamics ; 2017 , Pages 1-21 ; 09354964 (ISSN) Reshadi, M ; Saidi, M. H ; Ebrahimi, A ; Sharif University of Technology
    Abstract
    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid... 

    Simultaneous measurement of refractive index and thickness of multilayer systems using Fourier domain optical coherence tomography, part 2: Implementation

    , Article Journal of Biomedical Optics ; Volume 22, Issue 1 , 2017 ; 10833668 (ISSN) Rajai, P ; Schriemer, H ; Amjadi, A ; Munger, R ; Sharif University of Technology
    SPIE  2017
    Abstract
    We introduce a theoretical method for simultaneous measurement of refractive index and thickness of multilayer systems using Fourier domain optical coherence tomography (FD-OCT) without any auxiliary arrangement. The input data to the formalism are the FD-OCT measured optical path lengths (OPLs) and properly selected spectral components of FD-OCT interference spectrum. The outputs of the formalism can be affected significantly by uncertainty in measuring the OPLs. An optimization method is introduced to deal with the relatively large amount of uncertainty in measured OPLs and enhance the final results. Simulation result shows that by using the optimization method, indices can be extracted... 

    Simultaneous measurement of refractive index and thickness of multilayer systems using fourier domain optical coherence tomography, part 1: theory

    , Article Journal of Biomedical Optics ; Volume 22, Issue 1 , 2017 ; 10833668 (ISSN) Rajai, P ; Schriemer, H ; Amjadi, A ; Munger, R ; Sharif University of Technology
    Abstract
    We introduce a theoretical framework for simultaneous refractive index and thickness measurement of multilayer systems using the Fourier domain optical coherence tomography (FD-OCT) system without any previous information about the item under investigation. The input data to the new formalism are the FD-OCT measured optical path lengths and properly selected spectral components of the FD-OCT interference spectrum. No additional arrangement, reference reflector, or mechanical scanning is needed in this approach. Simulation results show that the accuracy of the extracted parameters depends on the index contrast of the sample while it is insensitive to the sample's thickness profile. For... 

    The role of ion partitioning in electrohydrodynamic characteristics of soft nanofluidics: Inclusion of EDL overlap and steric effects

    , Article Chemical Engineering Science ; Volume 190 , 2018 , Pages 443-458 ; 00092509 (ISSN) Reshadi, M ; Saidi, M. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, we aim to account for the partitioning of finite sized ions and electric double layer (EDL) overlapping effects on the electrostatics and hydrodynamics of soft nanofluidics by stablishing a modified Poisson-Boltzmann (MPB) equation enjoying mean field approach. The application of the present MPB equation enables us to describe the interaction between the steric effect and electrostatic repulsion of EDL ions due to permittivity difference of polyelectrolyte layer (PEL) and electrolyte solution. Utilizing the Debye-Hückel approximation pertinent to low surface potentials, we analytically derive the solutions of electric potential and velocity profiles of mixed electroosmotic and... 

    Development of a high-order compact finite-difference total Lagrangian method for nonlinear structural dynamic analysis

    , Article Applied Mathematical Modelling ; Volume 63 , 2018 , Pages 179-202 ; 0307904X (ISSN) Parseh, K ; Hejranfar, K ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    A high-order compact finite-difference total Lagrangian method (CFDTLM) is developed and applied to nonlinear structural dynamic analysis. The two-dimensional simulation of thermo-elastodynamics is numerically performed in generalized curvilinear coordinates by taking into account the geometric and material nonlinearities. The spatial discretization is carried out by a fourth-order compact finite-difference scheme and an implicit second-order accurate dual time-stepping method is applied for the time integration. The accuracy and capability of the proposed solution methodology for the nonlinear structural analysis is investigated through simulating different static and dynamic benchmark... 

    Assessment of characteristic boundary conditions based on the artificial compressibility method in generalized curvilinear coordinates for solution of the Euler equations

    , Article Computational Methods in Applied Mathematics ; Volume 18, Issue 4 , 2018 , Pages 717-740 ; 16094840 (ISSN) Parseh, K ; Hejranfar, K ; Sharif University of Technology
    De Gruyter  2018
    Abstract
    The characteristic boundary conditions are applied and assessed for the solution of incompressible inviscid flows. The two-dimensional incompressible Euler equations based on the artificial compressibility method are considered and then the characteristic boundary conditions are formulated in the generalized curvilinear coordinates and implemented on both the far-field and wall boundaries. A fourth-order compact finite-difference scheme is used to discretize the resulting system of equations. The solution methodology adopted is more suitable for this assessment because the Euler equations and the high-accurate numerical scheme applied are quite sensitive to the treatment of boundary... 

    Preconditioned WENO finite-difference lattice Boltzmann method for simulation of incompressible turbulent flows

    , Article Computers and Mathematics with Applications ; Volume 76, Issue 6 , 2018 , Pages 1427-1446 ; 08981221 (ISSN) Hejranfar, K ; Saadat, M. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this work, a preconditioned high-order weighted essentially non-oscillatory (WENO) finite-difference lattice Boltzmann method (WENO-LBM) is applied to deal with the incompressible turbulent flows. Two different turbulence models namely, the Spalart–Allmaras (SA) and k−ωSST models are used and applied in the solution method for this aim. The spatial derivatives of the two-dimensional (2D) preconditioned LB equation in the generalized curvilinear coordinates are discretized by using the fifth-order WENO finite-difference scheme and an implicit–explicit Runge–Kutta scheme is adopted for the time discretization. For the convective and diffusive terms of the turbulence transport equations, the... 

    Prediction of fluid flow and acoustic field of a supersonic jet using vorticity confinement

    , Article Journal of the Acoustical Society of America ; Volume 144, Issue 3 , 2018 , Pages 1521-1527 ; 00014966 (ISSN) Sadri, M ; Hejranfar, K ; Ebrahimi, M ; Sharif University of Technology
    Acoustical Society of America  2018
    Abstract
    In this study, the numerical simulation of the fluid flow and acoustic field of a supersonic jet is performed by using high-order discretization and the vorticity confinement (VC) method on coarse grids. The three-dimensional Navier-Stokes equations are considered in the generalized curvilinear coordinate system and the high-order compact finite-difference scheme is applied for the space discretization, and the time integration is performed by the fourth-order Runge-Kutta scheme. A low-pass high-order filter is applied to stabilize the numerical solution. The non-reflecting boundary conditions are adopted for all the free boundaries, and the Kirchhoff surface integration is utilized to... 

    Non-isothermal simulation of the behavior of unsaturated soils using a novel EFG-based three dimensional model

    , Article Computers and Geotechnics ; Volume 99 , 2018 , Pages 93-103 ; 0266352X (ISSN) Iranmanesh, M. A ; Pak, A ; Samimi, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, a three-dimensional simulation of fully coupled multiphase fluid flow and heat transfer through deforming porous media is presented in the context of EFG mesh-less method. Spatial discretization of the system of governing equations is performed using EFG and a fully implicit finite difference scheme is employed for temporal discretization. Penalty method is used for imposition of essential boundary conditions. The developed numerical tool is employed to simulate two problems of nuclear waste disposal and CO2 sequestration in deep underground strata. The obtained results demonstrate the capability and robustness of the developed EFG code. © 2018 Elsevier Ltd  

    IGBT open-circuit fault diagnosis in a Quasi-Z-source inverter

    , Article IEEE Transactions on Industrial Electronics ; Volume 66, Issue 4 , 2019 , Pages 2847-2856 ; 02780046 (ISSN) Yaghoubi, M ; Shokrollahi Moghani, J ; Noroozi, N ; Zolghadri, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, a fast and practical method is proposed for open-circuit (OC) fault diagnosis (FD) in a three-phase quasi-Z-source inverter (q-ZSI). Compared to the existing fast OC FD techniques in three-phase voltage-source inverters (VSIs), this method is more cost-effective since no ultra-fast processor or high-speed measurement is required. Additionally, the method is independent of the load condition. The proposed method is only applicable to Z-source family inverters and is based on observing the effect of shoot-through (SH) intervals on the system variables during switching periods. The proposed algorithm includes two consecutive stages: OC detection and fault location identification.... 

    Delayed data offloading based on full-duplex D2D communications in a cellular network

    , Article 2018 Iran Workshop on Communication and Information Theory, IWCIT 2018, 25 April 2018 through 26 April 2018 ; 2018 , Pages 1-6 ; 9781538641491 (ISBN) Karami, F ; Mirmohseni, M ; Ashtiani, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, we propose a new delayed data offloading scheme by exploiting full-duplex (FD) device-to-device (D2D) communications. To this end, we consider a scenario in which a common file is requested by a subset of users in different times and with different maximum tolerable delays. Moreover, a maximum specific bandwidth is dedicated for data transmission. In order to send the file in the specific bandwidth, we use multicasting alongside FD D2D communications. Thanks to the fact that users have different deadlines, we divide them into non-overlapping groups, i.e., coalitions, to receive the file in distinct intervals. In order to guarantee the tolerable delay of all users, a coalition... 

    On coarse grids simulation of compressible mixing layer flows using vorticity confinement

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 140, Issue 3 , 2018 ; 00982202 (ISSN) Hejranfar, K ; Ebrahimi, M ; Sadri, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    In this work, the capability and performance of the vorticity confinement (VC) implemented in a high-order accurate flow solver in predicting two-dimensional (2D) compressible mixing layer flows on coarse grids are investigated. Here, the system of governing equations with incorporation of the VC in the formulation is numerically solved by the fourth-order compact finite difference scheme. To stabilize the numerical solution, a low-pass high-order filter is applied, and the nonreflective boundary conditions are used at the farfield and outflow boundaries to minimize the reflections. At first, the numerical results without applying the VC are validated by available direct numerical... 

    Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    , Article Theoretical and Computational Fluid Dynamics ; Volume 32, Issue 1 , 2018 ; 09354964 (ISSN) Reshadi, M ; Saidi, M. H ; Ebrahimi, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid... 

    Application of a preconditioned high-order accurate artificial compressibility-based incompressible flow solver in wide range of Reynolds numbers

    , Article International Journal for Numerical Methods in Fluids ; Volume 86, Issue 1 , 2018 , Pages 46-77 ; 02712091 (ISSN) Hejranfar, K ; Parseh, K ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    In the present study, the preconditioned incompressible Navier-Stokes equations with the artificial compressibility method formulated in the generalized curvilinear coordinates are numerically solved by using a high-order compact finite-difference scheme for accurately and efficiently computing the incompressible flows in a wide range of Reynolds numbers. A fourth-order compact finite-difference scheme is utilized to accurately discretize the spatial derivative terms of the governing equations, and the time integration is carried out based on the dual time-stepping method. The capability of the proposed solution methodology for the computations of the steady and unsteady incompressible... 

    Simulation of three-dimensional incompressible flows in generalized curvilinear coordinates using a high-order compact finite-difference lattice Boltzmann method

    , Article International Journal for Numerical Methods in Fluids ; 2018 ; 02712091 (ISSN) Ezzatneshan, E ; Hejranfar, K ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    In the present study, a high-order compact finite-difference lattice Boltzmann method is applied for accurately computing 3-D incompressible flows in the generalized curvilinear coordinates to handle practical and realistic geometries with curved boundaries and nonuniform grids. The incompressible form of the 3-D nineteen discrete velocity lattice Boltzmann method is transformed into the generalized curvilinear coordinates. Herein, a fourth-order compact finite-difference scheme and a fourth-order Runge-Kutta scheme are used for the discretization of the spatial derivatives and the temporal term, respectively, in the resulting 3-D nineteen discrete velocity lattice Boltzmann equation to... 

    Computational simulation of marangoni convection under microgravity condition

    , Article Scientia Iranica ; Volume 16, Issue 6 B , 2009 , Pages 513-524 ; 10263098 (ISSN) Saidi, M. H ; Taeibi Rahni, M ; Asadi, B ; Ahmadi, G ; Sharif University of Technology
    2009
    Abstract
    In this work, the rising of a single bubble in a quiescent liquid under microgravity condition was simulated. In addition to general studies of microgravity effects, the initiation of hydrodynamic convection, solely due to the variations of interface curvature (surface tension force) and thus the generation of shearing forces at the interfaces, was also studied. Then, the variation of surface tension due to the temperature gradient (Marangoni convection), which can initiate the onset of convection even in the absence of buoyancy, was studied. The related unsteady incompressible full Navier-Stokes equations were solved using a finite difference method with a structured staggered grid. The...