Loading...
Search for: finite-difference-method
0.011 seconds
Total 169 records

    Error analysis of finite difference methods for two-dimensional advection-dispersion-reaction equation

    , Article Advances in Water Resources ; Volume 28, Issue 8 , 2005 , Pages 793-806 ; 03091708 (ISSN) Ataie Ashtiani, B ; Hosseini, S. A ; Sharif University of Technology
    2005
    Abstract
    In this paper, the numerical errors associated with the finite difference solutions of two-dimensional advection-dispersion equation with linear sorption are obtained from a Taylor analysis and are removed from numerical solution. The error expressions are based on a general form of the corresponding difference equation. The variation of these numerical truncation errors is presented as a function of Peclet and Courant numbers in X and Y direction, a Sink/Source dimensionless number and new form of Peclet and Courant numbers in X-Y plane. It is shown that the Crank-Nicolson method is the most accurate scheme based on the truncation error analysis. The effects of these truncation errors on... 

    Numerical errors of explicit finite difference approximation for two-dimensional solute transport equation with linear sorption

    , Article Environmental Modelling and Software ; Volume 20, Issue 7 , 2005 , Pages 817-826 ; 13648152 (ISSN) Ataie Ashtiani, B ; Hosseini, S. A ; Sharif University of Technology
    2005
    Abstract
    The numerical errors associated with explicit upstream finite difference solutions of two-dimensional advection - Dispersion equation with linear sorption are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation. The numerical truncation errors are defined using Peclet and Courant numbers in the X and Y direction, a sink/source dimensionless number and new Peclet and Courant numbers in the XY plane. The effects of these truncation errors on the explicit solution of a two-dimensional advection-dispersion equation with a first-order reaction or degradation are demonstrated by comparison with an analytical solution in... 

    Transient heat transfer analysis of a layer by considering the effect of radiation

    , Article Journal of Fusion Energy ; Volume 23, Issue 3 , 2005 , Pages 207-215 ; 01640313 (ISSN) Sharbati, E ; Safavisohi, B ; Aghanajafi, C ; Sharif University of Technology
    2005
    Abstract
    The transient heat transfer analysis of a layer has been studied much less than the steady state. However, transient temperature distribution resulted from including radiation and conduction simultaneously, is significantly different from those obtained by considering conduction alone. In order to include the effect of radiation heat transfer, we must insert the gradient of radiative flux in the energy equation. For this purpose, a variety of multi-flux methods have been suggested. A simplified procedure is the two-flux method, which is the one used in the present paper. This paper is focused on one-dimensional transient heat transfer of a layer using Finite Difference Method. To this end, a... 

    Localization of elastic waves in heterogeneous media with off-diagonal disorder and long-range correlations

    , Article Physical Review Letters ; Volume 94, Issue 16 , 2005 ; 00319007 (ISSN) Shahbazi, F ; Bahraminasab, A ; Vaez Allaei, S. M ; Sahimi, M ; Rahimi Tabar, M. R ; Sharif University of Technology
    2005
    Abstract
    Using the Martin-Siggia-Rose method, we study propagation of acoustic waves in strongly heterogeneous media which are characterized by a broad distribution of the elastic constants. Gaussian-white distributed elastic constants, as well as those with long-range correlations with nondecaying power-law correlation functions, are considered. The study is motivated in part by a recent discovery that the elastic moduli of rock at large length scales may be characterized by long-range power-law correlation functions. Depending on the disorder, the renormalization group (RG) flows exhibit a transition to localized regime in any dimension. We have numerically checked the RG results using the... 

    Effects of slip condition on the characteristic of flow in ice melting process

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 18, Issue 3 , 2005 , Pages 253-261 ; 1728-144X (ISSN) Raoufpanah, A ; Rad, M ; Borujerdi, A. N ; Sharif University of Technology
    Materials and Energy Research Center  2005
    Abstract
    In this paper a laminar flow of water on an ice layer subjected to a slip condition is considered numerically. The paper describes a parametric mathematical model to simulate the coupled heat and mass transfer events occurring in moving boundary problems associated with a quasi steady state steady flow process. The discretization technique of the elliptic governing differential equations of mass, momentum and energy is based on the control volume finite difference approach and enthalpy method, the results illustrate, the distribution of heat transfer coefficient, ice melting thickness, slip velocity at solid moving boundary and boundary layer thickness for some values of slip velocity... 

    Two-dimensional model for lateral intake flows

    , Article Proceedings of the Institution of Civil Engineers: Water Management ; Volume 158, Issue 4 , 2005 , Pages 141-150 ; 17417589 (ISSN) Kolahdoozan, M ; Taher Shamsi, A ; Sadeghi Bagheney, M ; Mohamadian, A ; Sharif University of Technology
    ICE Publishing  2005
    Abstract
    This paper gives details of the refinement and application of a two-dimensional horizontal model for rivers. An explicit finite-difference algorithm was used for solving the governing differential equations, which includes the conservation of mass and momentum to predict hydrodynamic parameters. The model includes different turbulence closure models - that is, constant eddy viscosity, Prandtl simple mixing length and Smagorinsky methods. An experimental programme was designed and carried out in a laboratory flume to measure the length of eddy produced at the entrance of the intake. Model predictions have been compared with experimental results for a lateral intake. The effect of different... 

    Computation of three-dimensional supersonic turbulent flows over wrap-around fin projectiles using personal computers

    , Article Scientia Iranica ; Volume 12, Issue 2 , 2005 , Pages 217-228 ; 10263098 (ISSN) Fazeli, H ; Azimi, A ; Farhanieh, B ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    The three-dimensional supersonic turbulent flows over wrap-around fin missiles have been computed using the Thin Layer Navier-Stokes (TLNS) equations to reduce the computational efforts compared to those of the Full Navier-Stokes (FNS) equations. In this research, the missile configuration is divided into multi regions to enable fluid flow simulation using Personal Computers (PC). It also makes it possible to use a different number of nodes and distribution of grids in each region to enhance the accuracy. The Thin Layer Navier-Stokes equations in the generalized coordinate system were solved using an efficient, implicit, finite-difference factored algorithm of the Beam and Warming. For the... 

    Reflection analysis of the end-facet dielectric slab waveguide by FDTD method

    , Article ICCEA 2004 - 2004 3rd International Conference on Computational Electromagnetics and its Applications, Beijing, 1 November 2004 through 4 November 2004 ; 2004 , Pages 453-456 ; 0780385624 (ISBN) Vahidpour, M ; Shishegar, A. A ; Sharif University of Technology
    2004
    Abstract
    The Finite Difference Time Domain (FDTD) method has been applied to the analysis of abruptly-ended dielectric waveguides. In these waveguides, incident propagating wave undergoes reflection in an interaction with the end-facet. As a result of the discontinuity, all possible propagating modes may be excited. The constituent propagating modes are extracted from the reflected wave by the least square method. Thus, we present a good estimation of the amplitudes of the reflected modes. This full wave analysis technique is also capable of analyzing any arbitrarily shaped facet. © 2004 IEEE  

    Transient and stability analysis in single-phase natural circulation

    , Article Annals of Nuclear Energy ; Volume 31, Issue 10 , 2004 , Pages 1177-1198 ; 03064549 (ISSN) Mousavian, S. K ; Misale, M ; D'Auria, F ; Salehi, M. A ; Sharif University of Technology
    2004
    Abstract
    This paper presents the mathematical modeling of single-phase natural circulation of the University of Genoa's rectangular loop (LOOP#1) by a computer program and using RELAP5 system code. The mass, momentum and energy conservation equations in transient form were solved numerically using the finite difference method. One-dimensional linear stability analysis was performed for the single-phase natural circulation loop and the numerical perturbation technique was used in this analysis. The Nyquist criterion was employed to find the stability map of the LOOP#1. The obtained transient results using the first order upwind scheme of the fluid temperatures in various sectors of the LOOP#1 are... 

    Practical prediction of supersonic viscous flows over complex configurations using personal computers

    , Article Journal of Spacecraft and Rockets ; Volume 38, Issue 5 , 2001 , Pages 795-798 ; 00224650 (ISSN) Esfahanian, V ; Azimi, A ; Hejranfar, K ; Sharif University of Technology
    2001

    Mode identification of high-amplitude pressure waves in liquid rocket engines

    , Article Journal of Sound and Vibration ; Volume 229, Issue 4 , 2000 , Pages 973-991 ; 0022460X (ISSN) Ebrahimi, R ; Mazaheri, K ; Ghafourian, A ; Sharif University of Technology
    2000
    Abstract
    Identification of existing instability modes from experimental pressure measurements of rocket engines is difficult, specially when steep waves are present. Actual pressure waves are often non-linear and include steep shocks followed by gradual expansions. It is generally believed that interaction of these non-linear waves is difficult to analyze. A method of mode identification is introduced. After presumption of constituent modes, they are superposed by using a standard finite difference scheme for solution of the classical wave equation. Waves are numerically produced at each end of the combustion tube with different wavelengths, amplitudes, and phases with respect to each other. Pressure... 

    Numerical Study of Bearing Capacity of Shallow Foundations on Two-Layer Soils

    , M.Sc. Thesis Sharif University of Technology Fathi Mehmandoost Sofla, Mahdi (Author) ; Ahmadi, Mohammad Mahdi (Supervisor)
    Abstract
    The purpose of designing the foundation is to transfer the load of the structure to the subsoil without creating shear failure and additional settlement in the soil. Therefore, choosing the appropriate bearing capacity is an important point that should be considered in any project. Determining the bearing capacity of foundations is one of the topics that has long been considered by researchers and geotechnical engineering designers. For this reason, its design is not considered a new issue, but the application of new methods and the development of computers, raises new perspectives on this issue that justifies new studies.Most of the recent study, which have done so far on bearing capacity,... 

    Recuperator Design of a 100kW Aviation Gas Turbine and its Integrated Performance Analysis with the Aircraft

    , M.Sc. Thesis Sharif University of Technology Shokati, Moosarreza (Author) ; Ghorbanian, Kaveh (Supervisor)
    Abstract
    The increasing need for more efficient and environmentally friendly microturbines necessitates the utilization of compact recuperators resulting in lower fuel consumption and emissions. The goal of this research is to determine the performance behavior of a primary surface recuperator to be incorporated in a 100 kW microturbine. Primary surface recuperator, known for relatively favorable characteristics in heat transfer, low weight, and high efficiency is considered as a candidate in aviation engines. In this research, a computational model for heat transfer and pressure losses is used for the design optimization of annular involute-profile cross wavy primary surface recuperators in... 

    Numerical Modeling of Cone Penetration Tests in Saturated Clayey Soil under Undrained Conditions

    , M.Sc. Thesis Sharif University of Technology Fakhimi Akmal, Mahdiyeh (Author) ; Ahmadi، Mohammad Mehdi (Supervisor)
    Abstract
    This study aims to numerical modeling of piezocone penetration test (CPTu) in saturated clayey soils under undrained conditions using FLAC-2D software. According to the available studies, measuring excess pore water pressure during the piezocone penetration test can play an important role in determining the characteristics and engineering parameters of clayey soils. In many geotechnical problems, the initial state of existing stresses in the ground and are an important parameter that must be known for designs and analysis. The relationship between vertical and horizontal effective stress under zero lateral deformation is usually expressed by the coefficient of lateral earth pressure at... 

    Nonlinear Dynamic Analysis of Earth and Rockfill Dams Using the Finite Difference Method Considering the Effect of Vertical Earthquake Component

    , M.Sc. Thesis Sharif University of Technology Babaee, Mohammad Saeed (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Earth and rockfill dams are enormous three-dimensional structures constructed from earth and rockfill materials. They are mainly built for water supply, agricultural land irrigation, electricity generation, and flood control. Earthquake is one of the most significant natural hazards affecting the stability of these dams. Nowadays, with the development of computers and software, the seismic behavior of most dams are assessed by dynamic analysis. In a considerable part of technical literature, dynamic analysis of earth and rockfill dams have been performed by applying only the horizontal component of the earthquakes, and the effects of vertical component of the earthquakes have often been... 

    Flow Simulation for Vacuum-assisted Resin Transfer Molding in Manufacturing of Composite Structures

    , M.Sc. Thesis Sharif University of Technology Teimouri, Hassan (Author) ; Abedian, Ali (Supervisor)
    Abstract
    One of the common and efficient methods in the construction of large-scale structures from composites is the Vacuum Assisted Resin Transfer Molding (VARTM) method, which is widely used in the automotive industry, wind turbine blades, warships and pleasure boats, etc. VARTM is one of the liquid molding methods in which one side of the closed mold is replaced with a vacuum bag and the resin flows into the mold only with the help of air pressure (pressure of one atmosphere). One of the main challenges in the vacuum resin molding process is to be aware of the physics governing the flow motion in the porous mold so that the dry spots formed in the mold can be located accordingly. On the other... 

    Numerical Simulation of One-Dimensional Compressible Flow with Real Gas Effects by Solving Boltzmann Equation Using High-Order Accurate Finitedifference Method

    , M.Sc. Thesis Sharif University of Technology Heydarzadeh, Amir Hossein (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the Shokov-BGK model of the Boltzmann equation is reformulated and generalized to consider the real gas effects. At first, the formulation is performed to consider an arbitrary specific heats ratio and the correct Prandtl number for polyatomic gases. Here, the resulting equations of the present formulation are numerically solved by applying the high-order finite-difference weighted essentially non-oscillatory (WENO) scheme. The present solution method is tested by computing the one-dimension Reiman problem with different specific heats ratios for a wide range of the Knudsen numbers. The results are compared with the available gas-kinetic results which show good agreement. It... 

    A Monte Carlo Method for Neutron Noise Calculation in the Frequency Domain

    , M.Sc. Thesis Sharif University of Technology Ghorbani Ashraf, Mahdi (Author) ; Vosoughi, Naser (Supervisor)
    Abstract
    Neutron noise equations, which are obtained by assuming small perturbations of macroscopic cross sections around a steady-state neutron field and by subsequently taking the Fourier transform in the frequency domain, have been usually solved by analytical techniques or by resorting to diffusion theory, but in this thesis, in order to increase of accuracy of neutron noise calculation, has been used transport approximation for neutron noise calculation and the Monte Carlo method has been used to solve transport equation of the neutron noise in the frequency domain. Since the transport equation of the neutron noise is a complex equation, a new Monte Carlo technique for treating complex-valued... 

    Development of Compact Finite Difference Boltzmann Method for Simulating Compressible Rarefied Gas Flow

    , M.Sc. Thesis Sharif University of Technology Alemi Arani, Ali (Author) ; Hejranfar, Kazem (Supervisor) ; Fouladi, Nematollah (Co-Supervisor)
    Abstract
    In this work, a high-order accurate gas kinetic scheme based on the compact finite-difference Boltzmann method (CFDBM) is developed and applied for simulating the compressible rarefied gas flows. Here, the Shakhov model of the Boltzmann equation is considered and the spatial derivative term in the resulting equation is discretized by using the fourth-order compact finite-difference method and the time integration is performed by using the third-order TVD Runge-Kutta method. A filtering procedure with three discontinuity-detecting sensors is applied and examined for the stabilization of the solution method especially for the problems involving the discontinuity regions such as the shock. The... 

    Numerical Simulation of 2D Compressible Cavitation Flow Using Compact Finite-Difference Method

    , M.Sc. Thesis Sharif University of Technology Irani, Mohammad (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the numerical simulation of 2D inviscid compressible cavitation flow is performed by using the compact finite-difference method. The problem formulation is based on the multiphase compressible Euler equations with the assumption of the homogeneous equilibrium model and the system of baseline differential equations is comprised of the continuity, momentum and energy equations for the vapor-liquid mixture. To complete the system of governing equations, the ideal gas relation is used for the vapor phase and the Tait relation is applied for the liquid phase, and therefore, the compressibility effects are considered for both the vapor and liquid phases. To analyze the flow...